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1. IntrolQction 

A sortjiig algorithm is said to be stable when it pre- 
serves the order of occurrence of equal elements and 
is said to require minimum storage if it uses only 
O((iog N’2) space besides the space needed to store N 
records. An algorithm using O(1) space is said to be in 
place. ‘Is there a stable minimum storage sorting dgo- 
rithm which requires less than 0(N2) units of time in 
its worst case, and/or on the average?’ Knuth posed 
this queshon [2]. 

This problem was solved by Trabb Pardo [4], 
whose st;$le algorithm merges two ordered vectors of 
length m:and n performing O(m + n) assignments and 
comparisj~ns and its application to sort a vector of 
length N works in place in running time O(N log N). 

The a.$m of this paper is to present a stable algo- 
rithm of ?nerging vectors of length m and n (m Q n) 
performirrg Q(m log(n/m + 1)) comparisons and 
Q((m + @) log m) assignments in O(log m) space. 

2. An op&nal in place algorithm of circular shift 

The b&sic procedure in this merging algorithm is an 
in place :#1gorithm of vector exchange, transforming 
vector ul!,rn = lul,n = Ivl,into vector vu. 

Ther& a known vector exchange algorithm [3 ] 
perfom%g3(L(m+n)/2J+ [n/2J+ ~m/2J)assign 
ments. T&e problem of vector exchange can be solved 
with m 4 n t g&m, n) assignments, where gcd(m, n) 
is the grfiatest co-mmori divisor of m and n. 

The @ztor exchange can be reduced to the fol- 

lowing problem: shift in place vector w = (w,,, wl, w2, 
*.., wlp_1) by n (0 < n < Q) positions to the right ob- 
taining vector (wQ-~, . . . . w~-.~, wo, . . . . wp-&. 

Let us defme: 

(1) w = (wg, . ..) wp-r), S = {0, 1, . . . . Q - l), 
0 < n < 9, p = gcd(ll, n). 

(2) (J : S + S, x = mod(x + n, a), where mod(a, b) 
is the remainder of dividing a by b. 

(3)Si=fiES:mod(i,p)=i)fori=O,...,p-1. 

Theorem 2.1. u is a permutation with cycles So, . . . . 
S P-l such that (w~(o),w~(~),...~w,(~-I~)= (WP-,,, 

l *.,Wp-l,W(), a**, W&f&. 

Proof. It is obvious that u is a permutation corre- 
sponding to this shift, sets So, . . . . S,_r form a parti- 
tion of S. We have to prove that for i = 0, . . . . p - 1: 

(1) Z(Si) = Si ,‘where b(A) = g: 3 x E A(o(x) = y)}; 
(2) if 9 Q Q E St and U(Q) = Q, then Q = Si. 

To prove (1) it is enough to notice that for any 
x E S mod(x, p) = mod(x + n, p), which implies 
mod(x, p) = mod@(x), p) since &j = ;zod(x + n, Q) 
and mod(Q, p) = 0. To prove (2) it is enough to show 
that Q has nlr, = 1‘31 I different elements. Let x E Q, 
then o’(x) E Q for any integer j Z 0 and o”(x) = 
mod(x t jn, I!) (o”(x) = x). Observe thaed(x) = 
ok(x) * 3 & - j = sQJn) * 3 Jk - j = rQ/p) because 
it holds that spin is an integer since gcd(Q, n) = p. 
Thusfork,je {O,l,..., Q/p- l}andj#kwehave 
d(x) # &_x) and this means there are Q/p different 
elements in Q. 
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Using as the base Theorem 2.1 we construct the 
procedure CHANGE which performs the exchange of 
two vectors u and v. Let us denote w = (~0, WI, l ... 

wO-_l)=uv,m= lul,n= Ivl,Q=m+nanc’~ 
gcd(Q, n) = gcd(m, n). 

Algorithm CHANGE(u, v) 

comment A[0 : m - 1] contains vector u and 
Aim : Q - l] contains vector v; 

f ori:=Ostepluntilp-ldo 
begin a := A[i]; k := i; j := u(i); 
comment the cycle Si is performed; 
repeat A[k] :=ACj;; k := j;j := u(j) 

until j =i;A[k] :=a 
t%ld; 

Let us notice that this procedure can be easily 
modified in the case when vector uv is in an array 
A[i : i + Q]. 

Theorem 2.2. Procedure CHANGE works in place and 
requires m + n + gcd(m, n) assignments. 

Roof: Procedure CHANGE ~~OZIIIS ISi I + 1~ 
(m+n)/p+ 1 assignmentsforeachi=O, l,...,p- !. 
Thus tbe algorithm performs p((m + n)/p + 1) = 
m + n 4 gcd(m, n) assignments and uses only one add& 
tinal record. 

timma 2.1. Each algorithm performing a permutation 
fin place needs at least N + p assignments, where f 
has p cycles C1, . . . . C, such that ICr I > 2, and 
N = Zp=, ICr I. 

Proof. Since each element must be moved from its 
initial position in some cycle Ci to its fmal position 
(which lies in the same cycle), we need at least K 
assignments. For each cycle Ci we consider a moment 
when for the fust time we place an element on its 
final position in this cycle. The element which had 
occupied this position previously must have been 
stored to avoid destroying it, but not on its f posi- 
tion (which lies in the same cycle). So for ail cycles 
at least p addftional assignments are required. 

Theorem 2.3. Algorithm CAGE is op+imal with 
re!spect to the number OJ tptleilm. 
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hoof. Follows immediately from Lemma 2.1 and 
Theorem 2.2. 

3. A fast merging algorithm 

For any ordered vectors u and Y Bk?? us dis$hrgu K?I 
pai6 ul, us, vl, v2 and an elemeau.9 f. such &at* 

(a)if jui< Iv& then 
(1) x is the middle elsnen! of u5 Le. u = up xuz amd _ 

- luJ= ~lul~q, Iu$= ~(tut - 1)/Z j, 
(2) vr consists of & elemejjts from v less than x, and 

v2 of all elements from v not less than x; 

(b)if lul> lvl, then 
(3) x is the middle element of v, i.e. v = v1 xv2 and 

hr,l= [lvV2J, lvgl= [(Iv1 - 1)/2]; 
(4) ul consists of all elements from u not greater than 

x and u2 of alf eiements from u greater than x. 

It is important for the stability that In point (2) 
there is a strong inequality to distinguish v3, and in 
point (4) a weak inequality to distinguish ul. 

Notice that having defmed parts ul, u2, vr, v2 and 
the element x it is enough to merge uI with v1 and 
us with v2 (x is on its final position). So on the base 
of this idea we construct the recursive algorithm 
IiEcMERGE merging two ordered vectors, 

Alpritlim RECMERGE(u, v) 

commentuisinA[i:j-=1]andvinA[j:k]; 
if tult/and lvl#O &en 

if IUJ 4 Ivl then 
beginp:=(itj-1)/2; 

mMyp+ UkJ9; 
comrnentul isinA[i:p],xisA(pt 11, 

~2 inAb+ : j], 

andv,isinAfi:Q],v2inA[Q+l :k]; 
CHANGE(xu2, vl) 
end 

due 
beginp:=(k+j- 1)/2; 

RFRWP+ W,j,Q); 
CommcILtvg isinAU:&xisAFp+ !i, 

v&Usfpt2:k], 
P 1 , 1 Zi-ia Ali : Q), u2 g: A@ -< 9 : j;; 

gj&GP(u2, VI X) 

ad; RECMERGE(w,, V&J .I?!?. .dc :“$J ‘EC,,,:,, v 
e& 



vchme * 2, number 1 INFORMATION PROCESSING LETTERS 13 February 1981 

Take 1 
Cor?parison of algorithms for merging two ordered vectors of length m and n (m < n) 

Algorithm Space Assignments Comparisons 
-i 
1 ‘k&h extra vector [ 21 O(m) * O(m + n) O(m + n) 
2 *:Links (lists) [2] O(m + n) O(1) O(m + n) 
r! BLdcKMERGE [4] O(1) O(m2 + n) O(m + n) 
4 Balanced trees [ 1) O(m + n) O(1) 
5 ‘Hwang and Lin [2) O(l) O(m + n2) 

O(m Mn/m + 01 
O(m log(n/m + 1)) 

6 ;RECMERGE O(log m) .O((m + n) log m) O(m log(n/m + 1)) 
7 :Trabb Pardo [4 ] O(1) O(m + n) O(m + n) 

‘c)ptimal(unknown) 00) O(m + n) O(m log(n/m + 1)) 

He!re, FINb(i, j,‘k, Q) is a binary search procedure 
fw&ling partition v1 and v2 of v satisfying (2) and 
pe,rforming [log f v] J + 1 t comparisons, and 
Rl%lW(i, j, k, 9) is similar to FIND satisfying (4). 

Aetusdenotem=min(lul, Ivl),n=max(lul, Ivl), 
k .‘= [log mJ and let rnj and ni denote the minimum 
tid maximum of lengths of vectors merging on the 
it? recursion level for i = 0, 1, . . . . k and j = 1,2,3, . . . . 
2’ (initially nt = n and rn! = m), some of ni and mf 
can be equal to zero. It is obvious that, on each level 
i 2,: 0, 1, . . . . k,Z&(mj+nf)<m+n. 

Theorem 3.1. The number of assignments in proce- 
dure RECMERGE does not exceed (m + n) log m + 
O(m + n) and the algorithm needs G&g m) space. 

Proof. The number of comparisons for each binary 
search is equal to Llog nlj + 1 for i = 1, . . . . k and j = 
1,2,3, . . . . 2’ for not null vectors and is equal to zero 
otherwise, thctefore in neither case it exceeds 
C& (log(nj + 0.5) + 1) on. the i* recursion level. 
Since ni + 0.5 > 0 and $r(nj t 0.5) Q m + n + 2”’ < 
3m/2 + n, by Lemma 3.1, algorithm RECMERGE 
performs at most 2’ + 2’ log((3m/2 + n)/2’) compari- 
sons on each recursion level. For all levels, the number 
of. comparisons is less than &(2’( 1 + log(3m/2 + n)) - 
i2’). Since Z&e i2’ = (k - 1) 2k+1 + 2, algorithm 
RECMERGE carries out at most (log(3m/2 + n) + 
1) 2k+r - (k - l)2k+’ 6 2m(log(3m/2 + n) - 
log m + 3) < 2m(log((3m + 2n)/m) + 2) = 
O(m log(n/m + 1)) comparisons. 

qrrief. Since on each level i = 0, . . . . k of recursion dis- 
joint p&s of u are merged with disjoint parts of v, 
ail calls of procedure CHANGE perform at most 
I,&($rn~ + l)/2 + nf + gcd((mj + 1)/2, nj)) < m + 
r-. + 2 assignments. Thus for all levels there are at 
n~ost(mtn)(k+1)+Z$Le2i<(m+n)logmt3mt 
r:i assignments. o(log m) memory space is needed to 
implement recursion. 

Corollary. The application of procedure RECMERGE 
to sort a vector of length N requires O(N(log N)*) 
assignments, O(N log N) comparisons and O(log N) 
space, since when m = n the merging algorithm per- 
forms O(m) comparisons and O(m log m) assignments. 

izmma3.1.Ifk=C&k~foranyk~>Oandinteger 
t > 0, then Z& log kj < 2’ log(k2’). 

There is a certain trade-off in the sorting and 
merging problem between three values: space, number 
of comparisons, number of assignments. Table 1 corn- 

pares different merging algorithms. 

:&oof. It is obvious since function ices Y. is concave. 4. Practical results 

t. , j - wm 3.2. Procedure RECMERGE )erforms 
a 1 @(n/m + 1)) c, jr* :?ansons. 

‘ :.i A&I; chapter log x denotes log2 X. 

We have implemented two emerging algorithms: 
Trabb Pardo’s [4] and RECMERGE. Table 2 com- 
pares their costs for sequences of randomly gener- 
ated integers. 

7 
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Table 2 
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Acknowledgment 
Comparison of stable in minimal spa& merging algorithms 
(m, n are lengths of merged vectors) 

m n Execution time in ms 

Trabb Pardo RECMERGE 

500 500 
1000 
1500 
2000 
2500 

1000 1000 
1500 
2000 
2500 
3000 

1500 1500 
2ooo 
2500 
3000 
3500 

2000 2000 
2500 
3ooo 

733 
1096 
1418 
1615 
2102 
1499 l 

1719 
2234 
2542 
2872 
2762 
2576 
2989 
3279 
3608 
29% 
3397 
3698 

557 
818 

1057 
1253 
1448 
1232 
1559 
1794 
2048 
2271 
1976 
1967 
2529 
2815 
3052 
2621 
2942 
3243 
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