
Volutne 12, number 1 INFORMATION PROCESSING LETTERS 13 February 1981

Oti A STABLE MINIMUM STORAGE MERGING ALGORITHM

Krkysztof DUDZIhKI and Andrzej DYDEK
hfitute of Informatics, Warsaw University, Poland

ReJeived 5 May 1980; revised version received 27 November 1980

Adlysis of algorithms, stable merging

1. IntrolQction

A sortjiig algorithm is said to be stable when it pre-
serves the order of occurrence of equal elements and
is said to require minimum storage if it uses only
O((iog N’2) space besides the space needed to store N
records. An algorithm using O(1) space is said to be in
place. ‘Is there a stable minimum storage sorting dgo-
rithm which requires less than 0(N2) units of time in
its worst case, and/or on the average?’ Knuth posed
this queshon [2].

This problem was solved by Trabb Pardo [4],
whose st;$le algorithm merges two ordered vectors of
length m:and n performing O(m + n) assignments and
comparisj~ns and its application to sort a vector of
length N works in place in running time O(N log N).

The a.$m of this paper is to present a stable algo-
rithm of ?nerging vectors of length m and n (m Q n)
performirrg Q(m log(n/m + 1)) comparisons and
Q((m + @) log m) assignments in O(log m) space.

2. An op&nal in place algorithm of circular shift

The b&sic procedure in this merging algorithm is an
in place :#1gorithm of vector exchange, transforming
vector ul!,rn = lul,n = Ivl,into vector vu.

Ther& a known vector exchange algorithm [3]
perfom%g3(L(m+n)/2J+ [n/2J+ ~m/2J)assign
ments. T&e problem of vector exchange can be solved
with m 4 n t g&m, n) assignments, where gcd(m, n)
is the grfiatest co-mmori divisor of m and n.

The @ztor exchange can be reduced to the fol-

lowing problem: shift in place vector w = (w,,, wl, w2,
*.., wlp_1) by n (0 < n < Q) positions to the right ob-
taining vector (wQ-~, w~-.~, wo, wp-&.

Let us defme:

(1) w = (wg, . ..) wp-r), S = {0, 1, Q - l),
0 < n < 9, p = gcd(ll, n).

(2) (J : S + S, x = mod(x + n, a), where mod(a, b)
is the remainder of dividing a by b.

(3)Si=fiES:mod(i,p)=i)fori=O,...,p-1.

Theorem 2.1. u is a permutation with cycles So,
S P-l such that (w~(o),w~(~),...~w,(~-I~)= (WP-,,,

l *.,Wp-l,W(), a**, W&f&.

Proof. It is obvious that u is a permutation corre-
sponding to this shift, sets So, S,_r form a parti-
tion of S. We have to prove that for i = 0, p - 1:

(1) Z(Si) = Si ,‘where b(A) = g: 3 x E A(o(x) = y)};
(2) if 9 Q Q E St and U(Q) = Q, then Q = Si.

To prove (1) it is enough to notice that for any
x E S mod(x, p) = mod(x + n, p), which implies
mod(x, p) = mod@(x), p) since &j = ;zod(x + n, Q)
and mod(Q, p) = 0. To prove (2) it is enough to show
that Q has nlr, = 1‘31 I different elements. Let x E Q,
then o’(x) E Q for any integer j Z 0 and o”(x) =
mod(x t jn, I!) (o”(x) = x). Observe thaed(x) =
ok(x) * 3 & - j = sQJn) * 3 Jk - j = rQ/p) because
it holds that spin is an integer since gcd(Q, n) = p.
Thusfork,je {O,l,..., Q/p- l}andj#kwehave
d(x) # &_x) and this means there are Q/p different
elements in Q.

Volume 12, number 1 INFORMATION~PROC~SING LETI’ERS 13 February 1981

Using as the base Theorem 2.1 we construct the
procedure CHANGE which performs the exchange of
two vectors u and v. Let us denote w = (~0, WI, l ...

wO-_l)=uv,m= lul,n= Ivl,Q=m+nanc’~
gcd(Q, n) = gcd(m, n).

Algorithm CHANGE(u, v)

comment A[0 : m - 1] contains vector u and
Aim : Q - l] contains vector v;

f ori:=Ostepluntilp-ldo
begin a := A[i]; k := i; j := u(i);
comment the cycle Si is performed;
repeat A[k] :=ACj;; k := j;j := u(j)

until j =i;A[k] :=a
t%ld;

Let us notice that this procedure can be easily
modified in the case when vector uv is in an array
A[i : i + Q].

Theorem 2.2. Procedure CHANGE works in place and
requires m + n + gcd(m, n) assignments.

Roof: Procedure CHANGE ~~OZIIIS ISi I + 1~
(m+n)/p+ 1 assignmentsforeachi=O, l,...,p- !.
Thus tbe algorithm performs p((m + n)/p + 1) =
m + n 4 gcd(m, n) assignments and uses only one add&
tinal record.

timma 2.1. Each algorithm performing a permutation
fin place needs at least N + p assignments, where f
has p cycles C1, C, such that ICr I > 2, and
N = Zp=, ICr I.

Proof. Since each element must be moved from its
initial position in some cycle Ci to its fmal position
(which lies in the same cycle), we need at least K
assignments. For each cycle Ci we consider a moment
when for the fust time we place an element on its
final position in this cycle. The element which had
occupied this position previously must have been
stored to avoid destroying it, but not on its f posi-
tion (which lies in the same cycle). So for ail cycles
at least p addftional assignments are required.

Theorem 2.3. Algorithm CAGE is op+imal with
re!spect to the number OJ tptleilm.

6

hoof. Follows immediately from Lemma 2.1 and
Theorem 2.2.

3. A fast merging algorithm

For any ordered vectors u and Y Bk?? us dis$hrgu K?I
pai6 ul, us, vl, v2 and an elemeau.9 f. such &at*

(a)if jui< Iv& then
(1) x is the middle elsnen! of u5 Le. u = up xuz amd _

- luJ= ~lul~q, Iu$= ~(tut - 1)/Z j,
(2) vr consists of & elemejjts from v less than x, and

v2 of all elements from v not less than x;

(b)if lul> lvl, then
(3) x is the middle element of v, i.e. v = v1 xv2 and

hr,l= [lvV2J, lvgl= [(Iv1 - 1)/2];
(4) ul consists of all elements from u not greater than

x and u2 of alf eiements from u greater than x.

It is important for the stability that In point (2)
there is a strong inequality to distinguish v3, and in
point (4) a weak inequality to distinguish ul.

Notice that having defmed parts ul, u2, vr, v2 and
the element x it is enough to merge uI with v1 and
us with v2 (x is on its final position). So on the base
of this idea we construct the recursive algorithm
IiEcMERGE merging two ordered vectors,

Alpritlim RECMERGE(u, v)

commentuisinA[i:j-=1]andvinA[j:k];
if tult/and lvl#O &en

if IUJ 4 Ivl then
beginp:=(itj-1)/2;

mMyp+ UkJ9;
comrnentul isinA[i:p],xisA(pt 11,

~2 inAb+ : j],

andv,isinAfi:Q],v2inA[Q+l :k];
CHANGE(xu2, vl)
end

due
beginp:=(k+j- 1)/2;

RFRWP+ W,j,Q);
CommcILtvg isinAU:&xisAFp+ !i,

v&Usfpt2:k],
P 1 , 1 Zi-ia Ali : Q), u2 g: A@ -< 9 : j;;

gj&GP(u2, VI X)

ad; RECMERGE(w,, V&J .I?!?. .dc :“$J ‘EC,,,:,, v
e&

vchme * 2, number 1 INFORMATION PROCESSING LETTERS 13 February 1981

Take 1
Cor?parison of algorithms for merging two ordered vectors of length m and n (m < n)

Algorithm Space Assignments Comparisons
-i
1 ‘k&h extra vector [21 O(m) * O(m + n) O(m + n)
2 *:Links (lists) [2] O(m + n) O(1) O(m + n)
r! BLdcKMERGE [4] O(1) O(m2 + n) O(m + n)
4 Balanced trees [1) O(m + n) O(1)
5 ‘Hwang and Lin [2) O(l) O(m + n2)

O(m Mn/m + 01
O(m log(n/m + 1))

6 ;RECMERGE O(log m) .O((m + n) log m) O(m log(n/m + 1))
7 :Trabb Pardo [4] O(1) O(m + n) O(m + n)

‘c)ptimal(unknown) 00) O(m + n) O(m log(n/m + 1))

He!re, FINb(i, j,‘k, Q) is a binary search procedure
fw&ling partition v1 and v2 of v satisfying (2) and
pe,rforming [log f v] J + 1 t comparisons, and
Rl%lW(i, j, k, 9) is similar to FIND satisfying (4).

Aetusdenotem=min(lul, Ivl),n=max(lul, Ivl),
k .‘= [log mJ and let rnj and ni denote the minimum
tid maximum of lengths of vectors merging on the
it? recursion level for i = 0, 1, k and j = 1,2,3,
2’ (initially nt = n and rn! = m), some of ni and mf
can be equal to zero. It is obvious that, on each level
i 2,: 0, 1, k,Z&(mj+nf)<m+n.

Theorem 3.1. The number of assignments in proce-
dure RECMERGE does not exceed (m + n) log m +
O(m + n) and the algorithm needs G&g m) space.

Proof. The number of comparisons for each binary
search is equal to Llog nlj + 1 for i = 1, k and j =
1,2,3, 2’ for not null vectors and is equal to zero
otherwise, thctefore in neither case it exceeds
C& (log(nj + 0.5) + 1) on. the i* recursion level.
Since ni + 0.5 > 0 and $r(nj t 0.5) Q m + n + 2”’ <
3m/2 + n, by Lemma 3.1, algorithm RECMERGE
performs at most 2’ + 2’ log((3m/2 + n)/2’) compari-
sons on each recursion level. For all levels, the number
of. comparisons is less than &(2’(1 + log(3m/2 + n)) -
i2’). Since Z&e i2’ = (k - 1) 2k+1 + 2, algorithm
RECMERGE carries out at most (log(3m/2 + n) +
1) 2k+r - (k - l)2k+’ 6 2m(log(3m/2 + n) -
log m + 3) < 2m(log((3m + 2n)/m) + 2) =
O(m log(n/m + 1)) comparisons.

qrrief. Since on each level i = 0, k of recursion dis-
joint p&s of u are merged with disjoint parts of v,
ail calls of procedure CHANGE perform at most
I,&($rn~ + l)/2 + nf + gcd((mj + 1)/2, nj)) < m +
r-. + 2 assignments. Thus for all levels there are at
n~ost(mtn)(k+1)+Z$Le2i<(m+n)logmt3mt
r:i assignments. o(log m) memory space is needed to
implement recursion.

Corollary. The application of procedure RECMERGE
to sort a vector of length N requires O(N(log N)*)
assignments, O(N log N) comparisons and O(log N)
space, since when m = n the merging algorithm per-
forms O(m) comparisons and O(m log m) assignments.

izmma3.1.Ifk=C&k~foranyk~>Oandinteger
t > 0, then Z& log kj < 2’ log(k2’).

There is a certain trade-off in the sorting and
merging problem between three values: space, number
of comparisons, number of assignments. Table 1 corn-

pares different merging algorithms.

:&oof. It is obvious since function ices Y. is concave. 4. Practical results

t. , j - wm 3.2. Procedure RECMERGE)erforms
a 1 @(n/m + 1)) c, jr* :?ansons.

‘ :.i A&I; chapter log x denotes log2 X.

We have implemented two emerging algorithms:
Trabb Pardo’s [4] and RECMERGE. Table 2 com-
pares their costs for sequences of randomly gener-
ated integers.

7

Volume 12, number 1

Table 2

INFORMATION PROCESSING LETTERS 13 February 1981

Acknowledgment
Comparison of stable in minimal spa& merging algorithms
(m, n are lengths of merged vectors)

m n Execution time in ms

Trabb Pardo RECMERGE

500 500
1000
1500
2000
2500

1000 1000
1500
2000
2500
3000

1500 1500
2ooo
2500
3000
3500

2000 2000
2500
3ooo

733
1096
1418
1615
2102
1499 l

1719
2234
2542
2872
2762
2576
2989
3279
3608
29%
3397
3698

557
818

1057
1253
1448
1232
1559
1794
2048
2271
1976
1967
2529
2815
3052
2621
2942
3243

We wish to tlmk Dr, 2. Bm~chowski for his initial
s~g@%ions and constiuctive cknments ski Prof.
W.M. Turski for his positive suggestions, critique of
the style and presentation cf this paper.

Refefences

[1) H. Brown and R. Tarjan, A fast meging algorithm, 3.
ACM 2 (1979).

[Z] D.E. Kn~th, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wtiey, Read& MA,
1973) ch. 5.

(3 1 J. van Lceuwen, The Cmpkhy of Data Organisation,
Matiuunaticol Centze Tmcts 81 (&@&hem& Cenbq
Amsterdam, 1976).

[4] L. Trabb Pardo, Statde sortiug and megiqg with optimal
space and time, SUM 3. Comput. (1977).

8

