Volume 12, number 1

INFORMATION PROCESSING LETTERS

13 February 1981

ON A STABLE MINIMUM STORAGE MERGING ALGORITHM

Kreysztof DUDZINSKI and Andrzej DYDEX

Inslitute of Informatics, Warsaw University, Poland

Redeived 5 May 1980; revised version received 27 November 1980

Anilysis of algorithms, stable merging

1. Introdixction

A sorting algorithm is said to be stable when it pre-
serves the order of occurrence of equal elements and
is said to require minimum storage if it uses only
O((log N 2) space besides the space needed to store N
records. /An algorithm using O(1) space is said to be in
place. ‘Is there a stable minimum storage sorting algo-
rithm which requires less than O(N?) units of time in
its worst case, and/or on the average?’ Knuth posed
this question [2].

This problem was solved by Trabb Pardo [4],
whose stible algorithm merges two ordered vectors of
length m.iand n performing O(m + n) assignments and
comparishns and its application to sort a vector of
length N wvorks in place in running time O(N log N).

The aim of this paper is to present a stable algo-
rithm of ‘merging vectors of length mandn (m<n)
performing O(m log(n/m +.1)) comparisons and
O((m +) log m) assignments in O(log m) space.

2. An optimal in place algorithm of circular shift

The basic procedure in this merging algorithm is an
in place usgorithm of vector exchange, transforming
vector uy, m = ul, n = |vl, into vector vu.

There'is a known vector exchange algorithm [3]
performsg 3(| (m +n)/2 | + | n/2] + | m/2]) assign-
ments. The problem of vector exchange can be solved
with m # n +ged(m, n) assignments, where ged(m, n)
is the gmatest coramon divisor of m and n.

__'The visctor exchange can be reduced to the fol-

lowing problem: shifi in place vector w = (wq, W;, Wy,
-y Wo_1) by n (0 <n <) positions to the right ob-
taining vector (Wo_p, .., Wo_1, Wos - Wo_n—1)-

Let us define: :

(1) w= (WO’] wQ—-l)’ S= {0’ 1: ey L - 1},
0<n<& p=ged(®, n).

(2) 0 : S8, x =mod(x + n, £), where mod(a, b)
is the remainder of dividing a by b.

() S; = {j €S: mod(j,p) =i} fori=o0,..,p—1.

Theorem 2.1. ¢ is a permutation with cycles S, ...,

Sp—1 such that (Wo(0), Wo(1)» s Wore—13) = (We—n,
ey Wo_1, Wo, ooy wQ—n—l)-

Proof. It is obvious that o is a permutation corre-
sponding to this shift, sets Sy, ..., S, form a parti-
tion of S. We have to prove that fori=0,...,p—1:

(1) (S, = S;, where 3(A) = {y: 3x € A(G(x)=y)k;
(2)if@% Q< S;and 0(Q) =Q, then Q =S§;.

To prove (1) it is enough to notice that for any
x € S mod(x, p) = mod(x + n, p), which implies
mod(x, p) = mod(o(x), p) since o(x) = inod(x +n, £)
and mod(%, p) = 0. To prove (2) it is enough to show
that Q has £/p = IS;| different elements. Let x € Q,
then 0¥(x) € Q for any integer j > 0 and ¢¥(x) =
mod(x + jn, £) (6°(x) = x). Observe thafol(x) =
o¥(x) © Ik —j = s2/n) « 3,(k — j = 19/p) because
it holds that sp/n is an integer since gcd(£, n) = p.
Thus fork,j € {0, 1, ..., #/p — 1}and j # k we have
ol(x) # o¥(x) and this means there are 2/p different
elements in Q.

Volume 12, number 1

Using as the base Theorem 2.! we construct the
procedure CHANGE which perferms the exchange of
two vectors u and v. Let us denote w = (o, Wy, .
wo_)=uv,m=lul,n=Ivl,8=m+nané ~=
ged(2, n) = gcd(m, n).

Algorithm CHANGE(u, v)

comment A[0 : m — 1] contains vector u and
A[m : £ — 1] contains vector v;
jorn :=Cstep 1 until p—1do
begin a := A[i]; k :=i;j := o(i);
comment the cycle S; is performed;
repeat A[k] := A[jy; k :=j;j := o(j)
untl j=i;A[k] :=a
end;

Let us notice that this procedure can be easily
modified in the case when vector uv is in an array
Afi:i+ €]

Theorem 2.2. Procedure CHANGE works in place and
requires m + n + gcd(m, n) assignments.

Proof. Procedure CHANGE pesforms I§;1 +1 =

(m +n)/p + 1 assignments foreachi=0,1,...,p— 1.
Thus the algorithm performs p((m+ n)/p + 1) =

m + n 4 ged(m, n) assigments and uses only one addi-
tiona! record.

iveemma 2.1. Each algorithm performing a permutation
f in place needs at least N + p assignments, where f
has p cycles Cy, ..., Cp, such that IC;l > 2, and
N=ZP,; Gl

Proof. Since each element must be moved from its
initial position in some cycle C; to its final position
(which lies in the same cycle), we need at least N
assignments. For each cycle C; we consider a mcment
when for the first time we place an element on its
final position in this cycle. The element which had
occupied this position previously must have been
stored to avoid destroying it, but not on its final posi-
tion (which lies in the same cycle). So for all cycles
at least p additional assignments are required.

FTheorem 2.3. Algorithm CHANGE is op?'mal with
respect to the number o, - ignineints.

6

INFORMATION PROCESSING LETTERS

13 February 1981

Proof. Follows immediately from Lemma 2.1 and
Theorem 2.2.

3.A fasi metgmg nlgonthm

~ Forany ordered vectors u and v fe¢ us distinguich
paits Uy, Us, V3, V; and an ‘elemert » such that:

(@)if Mr< ivl, then
(1) x is the middle eleinen? of v, i.e. u =y xu,; and
bugl={luljz], tuzi= |(lul - 1)/2],
(2) v; consists of ali elemeats {rom v less than x, and
vy of all elements from v not less than x;

(®)if lul > lvl, then
(3) x is the middle element of v, i.e. v=v, xv, and
tval= | V2], byl = [(Ivi = 1)/2];
(4) u; consists of all elements from u not greater than
x and u, of all elements from u greater than x.

It is important for the stability that in point (2)
there is a strong inequality to distinguish vy, and in
point (4) a weak inequality to distinguish u,.

Notice that having defined parts u,, u;, v;, v, and
the element x it is enough to merge u, with v; and
u, with v, (x is on its final position). So on the base
of this idea we construct the recursive algorithm
KECMERGE merging two ordered vectors.

Algorithm RECMERGE(u, v)

commentuisin Ali:j— 1] andvin Afj : k};
if lui#0and Ivl#0 then

begin
if iul < vl then
begin p := (i +j— 1)/2;
FIND(p + 1,j, k, 9);
comment u, isin Afi: p],xisA[p+1],
uinAfp+2:j],
andv, isin Afj: 2),v, in AlR+1 :k];
CHANGE(X“:, V])
end

else
beginp :=(k +j— 1)/2;
RFIND(p + 1, 1,j, 2);
comment vy isin Afj : pl,xis Afp + 1},
v;mA[p+2 k],

and 1y SINAT: Q) up AR ¢ 1

CHLNGE(U,, v,x) ‘

end; RECMERGE(u,,v,) PLC 457 By, v
end;

Velume 12, number 1 INFORMATION PROCESSING LETTERS 13 February 1981
Tatle 1
Coraparison of algorithms for merging two ordered vectors of length m and n (m < n)
Algo’r)rimm L | Space ~ Assignments Compariscns
1 'With extra vector [2] om Om+n) O(m + n)
2 Links (lists) [2] O(m +n) o(1) O(m +n)
2 ‘?‘BLOCKMERGE 4] o) O(m2 +n) O(m + n)
‘% Balanced trees [1) O(m+n) - o) O(m log(n/m + 1))
5 Hwangand Lin [2] o) O(m + nz) O(m log(n/m + 1))
6 RECMERGE O(log m) O((m + n) log m) O(m log(n/m + 1))
7 Trabb Pardo [4] o) O(m +n) O(m+n)

;Dptimal (unknown) o) O(m +n) O(m log(n/m + 1))

1
¢
3

Here, FIND(, j, k, £) is a binary search procedure
firding partition v, and v, of v satisfying (2) and
performing | log Ivl |+ 1 comparisons, and
RFFIND(, j, k, 2) is similar to FIND satisfying (4).

i Let us denote m = min(lul, Ivl), n=max(lul, Ivl),
k = | log m] and let m} and n} denote the minimum
and maximum of lengths of vectors merging on the
it" recursion level fori=0,1, ...,kandj=1,2,3, ..,
2! (initially n = n and m$ = m), some of n and m}
can be equal to zero. It is obvious that, on each level
i:0,1,....k, 2%, (m} +n) <m +n.

Theorem 3.1. The number of assignments in proce-
dure RECMERGE does not exceed (m + n) log m +
O(m + n) and the algorithm needs O(log m) space.

Proof. Since on each level i = 0, ..., k of recursion dis-
joint parts of u are merged with disjoint parts of v,
all calls of procedure CHANGE perform at most
:{;gi,(‘(mg + 1)/2+n} + ged((m} + 1)/2, nf)) <m +

r. + 2! assignments. Thus for all levels there are at
most (m+n)(k+1)+Zko2i <(m+n)logm+3m+
n: assignments. O(log m) memory space is needed to
implement recursion. '

Lemma3.1. Ifk= 2}:‘, k; for any k; >0 and integer
i 0, then Zf, log k; < 2! log(k/2").

Proof. It is obvious since function icy ». is concave.

<+ ~vem 3.2. Procedure RECMERGE ' rforms
¢, - log(n/m + 1)) ¢ ~pansons.

¢ 14 i chapter log x denotes log; x.

Proof. The number of comparisons for each binary
search is equal to |lognf|+ 1 fori=1,..,kandj=
1,2, 3, ..., 2" for not null vectors and is equal to zero
otherwise, }hcrefore in neither case it exceeds

%, (log(n} +0.5) + 1) on the i*" recursion level.

Since nf +0.5 >0 and E, (nf + 0.5)<m +n +2i-1<
3m/2 +n, by Lemma 3.1, algorithm RECMERGE
performs at most 2! + 2log{(3m/2 + n)/2!) compari-
sons on each recursion level. For all levels, the number
of comparisons is less than X4(2i(1 + log(3m/2 +n)) —
i2"). Since T, i2' = (k — 1)2%*! + 2, algorithm
RECMERGE carries out at most (log(3m/2 + n) +
1)2%*! — (k ~ 1)2%*! € 2m(log(3m/2 + n) —

log m + 3) € 2m(log((3m + 2n)/m) + 2) =

O(m log(n/m + 1)) comparisons.

Corollary. The application of procedure RECMERGE
to sort a vector of length N requires O(N(log N)?)
assignments, O(N log N) comparisons and O(log N)
space, since when m = n the merging algorithm per-
forms O(m) comparisons and O(m log m) assignments.

There is a certain trade-off in the sorting and
merging problem between three values: space, number
of comparisons, number of assignments. Table 1 com-

pares different merging algorithms.

4. Practical results

We have implemented two emerging algorithms:
Trabb Pardo’s [4] and RECMERGE. Table 2 com-
pares their costs for sequences of randomly gener-
ated integers.

Volume 12, number 1

Table 2
Comparison of stable in minimal space mergmg algonthms
(m, nare lengths of merged vectors)

INFORMATION PROCESSING LETTERS

m n Execuuon tlme in ms
Trabb Pardo . RECMERGE
500 500 733 . 587
1000 1096 818
1500 1418 1057
2000 1615 1253
2500 2102 1448
1000 1000 1499) 1232
1500 1719 \ 1559
2000 2234 1794
2500 2542 2048
3000 2872 2271
1500 1500 2762 1976
2000 2576 1967
2500 2989 2529
3000 3279 2815
3500 3608 3082
2000 2000 2996 2621
2500 3397 2942
3000 3698 3243

13 February 1981
Aclmowledgment
 We wish to thank Dr, L. Baniachowski for bis initial
' suggestlons and constructiy 1ents and Prof,
- WM. Turski for hxs_positive'suggesuons, critique of

‘the style and presentation of this paper

References

{1] M. Brown and R. Tarjan, A fast merging algorithm, J.
ACM 2 (1979).

{2] D.E. Knuth, The Art of Computer Prognmming Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA
1973) ch. §.

{3} J. van Leeuwen, The Complexity of Data Organisation,
Mathematical Centre Tracts 81 (Mathematical Centre,
Amsterdam, 1976).

{4] L. Trabb Pardo, Stable sorting and merging wuh optimal
space and time, SIAM J. Comput. (1977).

