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Abstract

Creating an immersive gameplay environment requires more than utilizing the latest shader 
technology or implementing cutting edge-AI; it requires the content to drive it. As games 
become bigger and better, content management becomes more and more important. With 12 
GB of just in-game assets spread across 39,000 files, we had to build custom tools to 
effectively handle content management for Halo 2. Even simple concepts like just-in-time 
editing of game assets or simply loading data from disk turn into complex beasts of 
implementation at that scale.

Introduction

As games become more and more complex and as hardware limitations have less and less of an 
impact on the quality of a game, future game innovation will come less from technology and 
more from content. For the purposes of this paper, content management is the process by 
which you create, organize and access non-volatile data necessary at runtime to drive a game 
engine. Content management applies to both runtime usage and persistent storage of game 
assets. For Halo 2, we were fortunate enough to have a mature persistent object system that 
handled all our resource management.

The tag system

A tag is the fundamental unit of our resource system. It corresponds to a single file on disk and 
a C structure in memory. Our tag system is similar to XML; where XML defines data as an 
XML file and its definition as a schema, we define data as a tag and its definition as a 
tag_group. However, there are two main differences: XML is stored as text while a tag is a 
stored as binary data, and an XML schema is defined in a text file while a tag_group is defined 
in code. We define tag_groups in code using a set of preprocessor macros that break down the 
corresponding C structure into its component types, e.g. integers, floats, strings.

Example 1: Defining a simple tag

Given the following C structure:
typedef float real;

struct sound_environment 
{ 
     real room_intensity_db; 
     real room_intensity_hf_db; 
     real room_rolloff_factor; 



     real decay_time; 
     real decay_hf_ratio; 
     real reflections_intensity_db; 
     real reflections_delay; 
     real reverb_intensity_db; 
     real reverb_delay; 
     real diffusion; 
     real density; 
     real hf_reference; 
}; 

We can define the corresponding tag_group in C code as follows: 

const unsigned long SOUND_ENVIRONMENT_TAG= 'snde'; 

TAG_GROUP( 
sound_environment, 
SOUND_ENVIRONMENT_TAG, 
sizeof(sound_environment)) 
{ 
     {_field_real, "room intensity"}, 
     {_field_real, "room intensity hf"}, 
     {_field_real, "room rolloff (0 to 10)"}, 
     {_field_real, "decay time (.1 to 20)" }, 
     {_field_real, "decay hf ratio (.1 to 2)"}, 
     {_field_real, "reflections intensity:dB[-100,10]"}, 
     {_field_real, "reflections delay (0 to .3):seconds" }, 
     {_field_real, "reverb intensity:dB[-100,20]"}, 
     {_field_real, "reverb delay (0 to .1):seconds"}, 
     {_field_real, "diffusion"}, 
     {_field_real, "density"}, 
     {_field_real, "hf reference(20 to 20,000)}, 
}; 

The sound_environment tag_group can then be inspected at runtime; our game asset editor, 
Guerilla, uses this information to generate a simple editing interface:



To allow for more complex data structures than a simple C struct, we also have a field type 
called a tag_block. A tag_block is similar to a tag_group; it defines a resizeable array whose 
elements correspond to a C struct. Since both a tag_group and tag_block can contain any set of 
fields, including tag_blocks, we can describe almost any type of structured data hierarchy.

Example 2: Defining a more complex tag

C struct definition: 
struct s_camera_track_control_point 
{ 
     real_vector3d position; 
     real_quaternion orientation; 
}; 



struct s_camera_track_definition 
{ 
     unsigned long flags; 
     struct tag_block control_points; 
}; 

Tag group definition: 

const unsigned long CAMERA_TRACK_DEFINITION_TAG= 'trak'; 

TAG_BLOCK( 
camera_track_control_point_block, 
k_maximum_number_of_camera_track_control_points, sizeof
(s_camera_track_control_point)) 
{ 
     {_field_real_vector3d, "position"}, 
     {_field_real_quaternion, "orientation"}, 
     {_field_terminator} 
}; 

TAG_GROUP( 
camera_track, 
CAMERA_TRACK_DEFINITION_TAG, 
sizeof(s_camera_track_definition)) 
{ 
     {_field_block, "control points", 
&camera_track_control_point_block}, 
     {_field_terminator} 
}; 

Editing interface:

To access elements of a tag_block, you have to use a macro: 



s_camera_track_definition *camera_track= ...; 
long control_point_index= ...; 
s_camera_track_control_point *control_point= 
TAG_BLOCK_GET_ELEMENT( 
&camera_track->control_points, 
control_point_index, 
s_camera_track_control_point);

This is an implementation detail that can easily be abstracted out via more preprocessor macros 
or through templated wrappers on top of the tag_block structure.

We also have a tag type to allow tags to cross-reference one another, called a tag_reference. A 
tag_reference is essentially a typed persistent pointer that is maintained by the tag system when 
a tag is loaded. A tag_reference can be further defined to point to tags of a single tag_group or 
multiple tag_groups. This simple abstraction is what powers much of our game asset 
management. For example, if a UI element needs a texture to render correctly, its tag_group 
would have a tag_reference reference field to a bitmap tag instead of embedding a bitmap 
directly.

Example 3: Defining a tag that depends on other tags

C struct: 
struct item_permutation_definition 
{ 
     real weight; 
     struct tag_reference item; 
     string_id variant_name; 
}; 

struct item_collection_definition 
{ 
     struct tag_block permutations; 
     short spawn_time; 
     short pad; 
}; 

Tag group definition: 
extern const unsigned long ITEM_DEFINITION_TAG; 

TAG_REFERENCE_DEFINITION( 
global_item_reference, 
ITEM_DEFINITION_TAG); 

#define MAXIMUM_NUMBER_OF_PERMUTATIONS_PER_ITEM_GROUP 32 
#define MAXIMUM_NUMBER_OF_ITEM_GROUPS 128 



TAG_BLOCK( 
item_permutation, 
MAXIMUM_NUMBER_OF_PERMUTATIONS_PER_ITEM_GROUP, sizeof(struct 
item_permutation_definition)) 
{ 
     {_field_real, "weight "}, 
     {_field_tag_reference, "item ", &global_item_reference}, 
     {_field_string_id, "variant name"}, 
     {_field_terminator} 

}; 

TAG_GROUP( 
item_collection, 
ITEM_COLLECTION_DEFINITION_TAG, 
sizeof(struct item_collection_definition)) 
{ 
     {_field_block, "item permutations", &item_permutation}, 
     {_field_short_integer, "spawn time (in seconds, 0 = 
default)"}, 
     FIELD_PAD(1 * sizeof(short)), 

     {_field_terminator} 
};

Editing interface:

Both tag_blocks and tag_groups can also have load-time processing behavior defined in code, 
e.g., to optimize data structures or initialize runtime variables. We refer to this load-time 
processing as postprocessing. For example, our sound effect tag generates different C structs at 
runtime depending on the type of sound effect; a distortion effect would take the high-level 
distortion parameters to create the DirectSound distortion parameters and store that data in the 
tag. Our shader system has a similar mechanism to take a high level shader definition and 



optimize it into a more code and hardware friendly format at runtime.

All this manual maintenance of the tag system may seem like a lot of tedious work, but it gives 
us the benefits one would normally get with a native reflection system. We can write code that 
analyzes or transforms any tag in a generic fashion. Many operations that can be defined at a 
high level using type-agnostic pseudocode can be implemented in about the same amount of C/
C++ code that manipulates the tag system.

One obvious application of the tag system is the ability to serialize a tag from memory to disk 
as well as restore a tag in memory from the disk without having to write custom code for each 
particular asset type; loading a tag is a fairly straightforward process:

1. Find the tag_group corresponding to the tag we wish to load
2. Load the tag into memory
3. Walk the tag hierarchy and postprocess each tag_block element using a post-order 

traversal
4. Walk the tag hierarchy again and for each tag_reference find or load the corresponding 

tag (starting at step 1)
5. Postprocess the tag using the postprocess function defined its tag_group

This load process ensures that once a tag is loaded, it has every tag it depends on also loaded. 
This process also allows for tags that are multiply referenced to be loaded once at runtime. We 
can also provide default tags for tag_references that point to non-existent tags. For example, we 
have a default object tag that is a horribly textured sphere; should any tag reference a non-
existent object tag, we show the ball instead.

The payoff[s]

Our tags system as a persistent object system helped us tremendously in the development of 
Halo 1 and 2.

Level loading process

With most of our game assets defined as tags, none of our leaf game systems (e.g., physics, 
sound, rendering, AI) manage their respective assets; all resources are handled by the tag 
system. To facilitate this separation of control between the game and the tag system, we only 
explicitly load two tags: the globals tag and a scenario tag. The scenario tag is basically the 
level representation. The globals and scenario tags are available for any game system to access, 
so for a game system to have access to a particular tag, it must be accessible through the globals 
tag or the scenario tag.

This consistent loading behavior across the entire game provided us a single entry point for 
loading a level for gameplay, lightmapping, optimizing for a DVD build, or any other process 
we wish to apply to an entire level. However, because the only supported way to run the game 
requires a level to load, it has been very difficult for us to develop interactive tools for viewing 
and editing data that doesn't need a level loaded, e.g., interactively editing particle effects or 
viewing animations. What usually happened is that we added scripting commands in the game 



engine to manually load a given tag and use the automatic reloads to update it on the fly.

Automatic reloading of single tags

Since we only allow access to tag data through handles provided by the tag system, a tag can be 
reloaded or modified at any time during the lifetime of a game quickly and easily, without 
adversely affecting other game systems. To make this system more robust, we have a single 
entry point for reloading tags in case we have a need to have custom cleanup or initialization 
code when a tag reloads. For example, we pushed data from tags into Havok, a third party 
physics system. Any time we reloaded a physics tag we had to release all references Havok had 
on the tag before unloading it from memory, and re-associate those references once the tag was 
fully reloaded.

For our PC builds, we can easily detect file changes using the file system change notification 
system. For our Xbox builds, the process is a little more complicated. Our Xbox build cannot 
use the same file paths as our PC build for performance reasons related to the Xbox's 
simplified file system. In order to accommodate this restriction, we encode tag paths into a 
number and generate a directory and filename based on that number. We store this information 
for all tags on the Xbox in a giant file called the tag file index and use that mapping at runtime 
to locate tags based on their full path. We use that information every time we synchronize tags 
from the PC to the Xbox so that we only need to copy the tags that have changed. We call this 
synchronization process xsync. If the game is running on the Xbox during an xsync, it can 
detect when the index file updates and reload those tags that have changed in the process. 
Xsync is an integral part of our content pipeline; artists and designers can changes made on the 
PC quickly on the Xbox, allowing for quick iteration times on content presented as close to the 
final presentation as possible. For example, an artist can update the textures on a model on the 
Xbox as s/he edits them on the PC; for them, the average turnaround time to see a texture 
update is about 5 seconds.

Cache files: Optimized resources for the Xbox

One powerful aspect of our tag system is the complete separation between resource runtime 
access and resource storage. Accessing tag data must be done through the tag system; as such, 
the tag system can provide that data through any arbitrary mechanism: caching the data in 
memory, generating it at runtime, streaming it over the network, etc. As such, we can 
completely change the underlying implementation of the tag system without affecting any other 
game system that relies on the tag system. The fact that our editing build runs from multiple 
single files is an implementation detail; it is not a necessary component of the tag system itself.

Our single file based tag system is great for editing the game, but to run on retail Xboxes we 
need to optimize the resource format so that it loads quickly with a minimal amount of memory; 
loading from multiple single files would clearly have a lot of runtime overhead, as well as 
rebuilding tags from scratch every time we run a new level. Since all tags can be referenced 
globally by a handle, once we load a level we have all the assets we needed to load it again. 
And, because we have the tag_group layout for every loaded tag, we know how to serialize 
each tag to a fixed runtime address without having to write custom code. When we build the 



final resource file, which we call a cache file, we simply dump all loaded tags into a giant 
buffer and write that out to a single file. At runtime, we just need to read that file into a fixed 
address before we start the level; all other runtime systems behave the same. We do have a few 
custom steps for stripping out and storing demand loaded data (namely textures and sound), 
but the overall amount of work to implement the shipping resource files is extremely 
straightforward.

Geometry cache (AKA, the "anything" cache)

For Halo 2, we decided to add geometry as a cacheable data type. This wasn't nearly as easy to 
do compared to texture or sound data because we had two different geometry formats, both of 
which were more complex than just a chunk of data. In order to correctly page in this kind of 
data, we put the geometry data into a tag_block and inspected its structure to serialize it similar 
to how we serialize cache files. At runtime, we would inspect the tag_block structure to restore 
the data properly. This kind of caching mechanism for geometry allowed us to put much more 
variety of models and environments into every level. It wasn't a perfect caching mechanism, as 
we did end up with many levels that had too much data to put into memory at once. But in the 
end, it gave us the flexibility to build much more detailed and diverse worlds compared to Halo 
1.

Incidentally, because the geometry cache operated on single-element tag_blocks and not just 
geometry specific data, we were also able to cache our lip-sync data for combat dialogue using 
the same system.
Tag dependency database

During the course of Halo 2's development, we found the need to analyze the relationships 
between tags, e.g., locating dangling tag references, finding what tags reference a given tag, etc. 
In order to analyze these relationships, we loaded every tag and stored all its tag_references. 
After doing this for every tag, we would then go back and create a graph with a link for each 
tag to the tags that reference it.

This dependency database also gave us enough information to move entire tag hierarchies 
around without breaking external references; given a set of tags and the location to move them 
to, we could determine what tags needed to have their references fixed up and move the tags 
safely without breaking dependencies. We also used the same information to clone entire tag 
hierarchies; this let us take existing content and replicate it into its own self-contained hierarchy 
for further modification without affecting the pre-existing content.

These are a few of the many powerful analysis tools available once you have a type inspection 
system that is programmatically accessible for your game assets.

Problems with the tag system

Unfortunately, we ran into several problems with our tag system over the lifetime of Halo's 
development.



Data coupling require more complex reload behavior

As we evolved existing systems, we had tags depend on data in their child tags at runtime, e.g., 
a sound effect would depend on data in a sound_effect_template tag; changing the child tag 
would have to trigger a reload of the parent as well in order to maintain a valid runtime state. 
This was easily solved by generating a mapping from child tags to parent tags; the hard part 
was determining which child<->parent tag relationships to map. Mapping the dependencies 
based solely on the tag_group layout wasn't an option for two reasons: many tags did not have 
their runtime behavior defined from data in child tags, or they had behavior defined by data in a 
child tag of a child tag. Our solution was a bit more elegant: every time we postprocess a tag, 
we log which tags are accessed via the global handle system, and store that as the dependency. 
At tag reload time, we took the list of tags to reload, added the tags that depended on them at 
runtime, and then reloaded them in the appropriate order.

Unfortunately, the code-driven dependency database caused some strange runtime behavior. 
Many tags were validated at runtime during the postprocessing of a more global tag. In one 
particularly horrible case, the shaders attached to our level geometry were validated at 
postprocess time for level geometry. This had the unfortunate side effect of reloading the level 
geometry when a bitmap attached to a shader attached to the level geometry changed. Reloading 
level geometry takes a while because of how it globally affects the game, so even simple bitmap 
changes could take a few minutes to reload. In order to break these kinds of unnecessary 
dependencies, we had to manually suppress the dependency mapping process in the 
postprocess function as they were discovered. As you can expect, this manual process was 
extremely brittle, and it caused a lot of frustration as the code evolved and created new 
unexpected dependencies between tags.

More complex tags break Windows

Our basic game asset editor, Guerilla, is a powerful editing tool that uses the tag_group layout 
to create a simple editing interface for tags. Guerilla iterates over the tag_group fields and 
generates the editing interface by compositing pre-defined dialogs together to create a form 
view. Unfortunately, creating dialogs allocates space out of the Windows desktop heap. Since 
every GUI application uses the desktop heap, exhausting it will cause problems with every 
GUI application. As our tags became bigger and more complex, Guerilla would often exhaust 
the desktop heap. This usually manifested in broken behavior across all applications: error 
dialogs would not display, chat programs wouldn't run correctly, 3d Studio Max would 
mysteriously eat input without displaying the correct editing dialogs. Our solution, which is 
more accurately described as a kludge, was to hide fields that only programmers needed to 
view. This wasn't really a solution; it merely delayed Guerilla's ultimate destruction of 
Windows.

Tag system destroys the Xbox file system

For our Xbox editing build to run with the new geometry cache system, we had to dump the 
stripped geometry into a giant monolithic file. Our first pass at this process had us strip the 
geometry and other cacheable data at load time on the Xbox. At first, this solution worked 



pretty well. Cacheable data was stripped at load time, resulting in a smaller memory footprint, 
and our editing build only had to access a single file to page in cacheable data. However, this 
resulted in an explosion of load times later on in the project as we added a ton of sound assets. 
Sound assets by far dwarf every other kind of asset we have, in terms of variety and sheer size. 
We spent more time writing out cacheable sound data than we did reading in tags. To reduce 
load times, we moved the cacheable data stripping into the xsync process. This increased xsync 
times a lot, but it reduced Xbox load times enough to make it a net win in terms of overall time 
wasted waiting to run the game. We did run into a few runtime consistency problems, as the 
xsync process wasn't completely transactional. You could occasionally have a tag loaded at 
runtime that failed to cache its data properly at a later xsync time making the tag basically have 
no valid cacheable data. However, this was due to space constraints on the Xbox and is 
something that is easily solvable in the future.

Combat dialogue destroys the Windows file system

The combat dialogue data we had for Halo 2 was one of the most horrific data sets we could 
have ever created for any game for three major reasons:

1. The order of magnitude increase in complexity with our combat dialog system required 
an equal increase in quantity of combat dialogue sounds.

2. To ease our localization process, spoken dialog had multiple language versions 
embedded in a single sound tag.

3. Raw sound data and tag data were interleaved throughout the sound tag.
These three factors caused the Windows file system to break when we added combat dialogue 
for all the major characters. Running a level now required us to read in a relatively small 
amount of data over thousands of files with a non-predictable access pattern. This kind of 
interaction with the file system managed to thrash the file system cache every time we loaded a 
level that had characters with combat dialogue, which inconveniently happened to be every 
single campaign level.

Thrashing the Windows file system cache is one of the most effective ways to de-optimize any 
file system activity; any file system data that could be read from memory now has to come from 
the disk, which is obviously an order of magnitude slower. For us, that caused load times to 
increase from 15-20 seconds to 5-8 minutes for the more complex campaign levels, even on 
machines with 2 GB of RAM.

To maintain reasonable load times on the PC, we resorted to shadowing the combat dialogue 
directory from source control. Obviously, this wasn't the most optimal solution, but short of 
writing our own PC side file system, it was the best solution we could come up with.

Future considerations

As powerful as our tag system is, it is still cumbersome to setup new tag_groups and 
tag_blocks. A programmer has to manually define a tag in code, a process that is both 
extremely error prone with those unfamiliar with the system and quite brittle as data formats 
change and evolve. A more maintainable solution would be to separate the tag_group definition 



into a separate file and build process; one major benefit of a separate system would be to 
provide for a less brittle process for defining a tag_group and making sure the layout is 
consistent with the compiler's struct layout.

Another area rife with possibilities would be to allow for arbitrary data stores to serve as the 
backend of the tag system. As it stands right now, the tag storage system is basically a database 
implemented on top of a file system. We can easily abstract out the storage system so that we 
can load tags from anywhere; a network share, a database that generates the tag on the fly, from 
a collection of text files, or any other mechanism we come up with.

Conclusion

Our tag system was an integral part of our overall development process that enabled us to 
effectively develop many different systems for Halo 1 and 2 while at the same time providing a 
resource management system that could be targeted to widely varying runtime platforms 
without affecting other code. By creating a cleanly separable persistence system that 
programmatically provides type inspection, we were able to analyze and optimize our resources 
quickly and easily with a minimum amount of effort and with very little modification of the 
underlying system.


