
The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 1 of 11

The Guerrilla Guide to Game Code

Jorrit Rouwé – Lead Programmer Shellshock Nam ‘67 – Guerrilla Games

Published: 14 April 2005 on Gamasutra

Introduction

There are a lot of articles about games. Most of these are about particular aspects of a

game like rendering or physics. All engines, however, have a binding structure that ties

all aspects of the game together. Usually there is a base class (Object, Actor or Entity are

common names) that all objects in the game derive from, but very little is written on the

subject. Only very recently a couple of talks on game|tech have briefly touched on the

subject [Bloom], [Butcher], [Stelly]. Still, choosing a structure to build your game on is

very important. The end user might not “see” the difference between a good and a bad

structure, but this choice will affect many aspects of the development process. A good

structure will reduce risk and increase the efficiency of the team.

When we started Shellshock Nam ‘67 (SSN67) at Guerrilla Games we were looking for a

structure that would be flexible enough to handle all of our ideas, yet strict enough to

force us into a structured way of working. The development of our first game Killzone

was already well underway so we had a good opportunity to look at their structure and

improve on it. After a couple of weeks the base structure for our game had been designed

and over the course of the next 2 years a lot changed but our basic structure remained

more or less the same.

The core design decisions we made at the start of SSN67 are:

• The system needs to be (mostly) data driven

• It should use the well known Model-View-Controller pattern

• The game simulation should run at a fixed update frequency to ensure consistent

behavior on all platforms (PS2, XBOX and PC)

In the remainder of this article these points will be worked out to show how they were

implemented in SSN67.

Entities

In SSN67 the base class for all game objects is called Entity. We make a clear distinction

between objects that have game state and those that don’t. For example, the static world

geometry and its collision model are not Entities, neither is a moving cloud in the sky.

The player can’t change the state of these objects so they are not an Entity. An oil barrel,

for example, is an Entity because when it explodes it can harm the player and therefore

influences the game state.

Using a definition like this makes it very easy to separate objects that are important to the

game from objects that are not. Our streaming system, for example, can stream textures

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 2 of 11

and other rendering data in and out without affecting the game state. Another system that

benefits is the save game system. The state of an Entity is saved and on reload all current

Entities are destroyed and replaced by Entities from the save game. Because all static

geometry is unaffected saving and loading is very quick and the resulting save game is

small. To go back to our example of a moving cloud: In SSN67 clouds are not Entities

and therefore not saved. If you look carefully you can see this.

Most of the Entities in SSN67 need a position and orientation in the world so our Entity

by default contains a 4x4 matrix. For those Entities that do not need a position we just

accept the overhead.

Data driven

Data driven systems use data instead of code to determine the properties of a system

where possible. In SSN67 we used the EntityResource class as base class for Entity

properties. EntityResources are defined in a text file and edited by hand. The following

example shows what the configuration for an NPC could look like:

CoreObject Class=HumanoidResource

{

 Name = Ramirez

 Model = models/soldiers/ramirez

 Speed = 5

 …

}

When these text files are loaded by our serialization system the corresponding objects are

automatically created and each variable is mapped onto a member variable. After an

EntityResource is loaded we validate the range of each variable and check if all variables

together form a correct configuration. If this is not the case the game will display an error

and refuse to run until the problem is corrected.

In SSN67 we do not allow Entities to be created without an EntityResource. Using an

EntityResource makes sure that a specific object acts the same in all levels. This

generally reduces the amount of bug fixing when the code for an Entity changes, because

there is no need to test every level but only the EntityResources that are affected. We use

a simple folder structure to store our EntityResources with one object per file.

The Factory pattern [DP] is used to create an Entity from its EntityResource. This means

that if you have an EntityResource you can create a corresponding Entity ready to be

used in game. We use the factory mechanism, for example, in our Maya plug-in. Level

designers can create an Entity in a level by selecting the corresponding EntityResource

file. Maya uses the factory to create an Entity for it and allows the level designer to

position it. Entities that need specific (dynamic) behavior are controlled from our

scripting language LUA [LUA]. The properties that can be set from LUA usually boil

down to giving high level commands to the AI so that most of the configuration of an

Entity is still contained in the EntityResource. Supporting a new Entity class in Maya is

as simple as recompiling the Maya plug-in.

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 3 of 11

Model-View-Controller

The Model-View-Controller pattern [DP] is used in many areas. In a word processor, for

example, the Controller handles mouse and keyboard input and translates these to simple

actions. The Model manages the text and executes the actions dictated by the Controller.

The View is responsible for drawing (a portion of) the text on screen and communicates

with the display drivers.

In a game we can use the same pattern. In our case the Model is called Entity, the View is

called EntityRepresentation and the Controller is called Controller. We will now discuss

the roles of each of these classes in game.

The Model (Entity)

Entities try to keep a minimal state of the object. Any state that is only needed for

visualization is not part of the Entity. Most Entities in SSN67 are simple state machines.

Ideally the Entity should not know about its animations but unfortunately most

animations affect the collision volume of the Entity and therefore the game state. Still, we

try to keep Entities and their animations as loosely coupled as possible. A walking

humanoid, for example, looks at its EntityResource for its maximum walk speed and not

at the walk animation. The EntityResource precalculates the speed of the walk animation

and speeds up / slows down the animation based on the current speed. This makes it

possible to use a simple model for a walking humanoid (linear movement) while the

animation always matches the current speed perfectly.

The View (EntityRepresentation)

The EntityRepresentation is responsible for drawing the Entity and all of its effects.

Examples of things that an EntityRepresentation manages are:

• 3D models

• Particles

• Decals

• Screen filters

• Sound

• Controller rumble

• Camera shake

An EntityRepresentation can look at but not change the state of the Entity. The current

state of an Entity is usually enough to calculate the state of the EntityRepresentation. In

some cases this is not practical however. For example, when a human gets hit we want a

blood spray from the wound. Simply looking at the previous health and the current health

does not tell us where the enemy was hit. For these cases we use a messaging system. All

messages derive from a class called EntityEvent, which contains an ID that indicates the

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 4 of 11

type of the message. The getting hit message also contains the type and amount of

damage and where the hit occurred. The Entity fills in the structure and sends it to a

message handler in the EntityRepresentation. It won’t receive a response to this message

so the communication is one way only.

To achieve a game object that looks realistic the timing of effects is usually critical and

needs a lot of code to manage. By separating this code from the essential game logic we

reduce the risk of bugs. Another advantage is that if all objects follow the rules, the game

state is not dependent on any of the EntityRepresentations and the game can run without

them. This principle can be very useful for creating a dedicated multiplayer server where

graphical output is not needed.

The Controller

The Controller provides abstract input for an Entity. For every Entity that supports

Controllers we create a base class that defines the controllable parts of the Entity. From

this version we can derive an AI and a player version of the Controller. For example, a

Humanoid has a HumanoidController and we derive a HumanoidAIController and a

HumanoidPlayerController from this controller. The player version of the controller can

be further split up to provide mouse and keyboard support (for PC) or joystick support

(for XBOX and PS2).

The role of the Controller is to specify what the Entity should do. The Controller can’t

directly change the state of the Entity. Every update the Controller is polled by the Entity

and the Entity tries to follow the Controllers instructions.

For example, the Controller would never call a MoveTo() function on a Humanoid but

instead the Humanoid would poll the Controller’s GetDesiredSpeed() function and then

try to reach this speed while performing collision detection to make sure not to clip

through walls.

The Controller’s functions are more abstract than IsButtonPressed() or

GetJoystickAxisX(), this to make it easier for the AI to use the Controller.

To make a Humanoid interact with a mounted gun, for example, the HumanoidController

implements a function called GetUseObject(). This function is polled every update by the

Humanoid. The AI uses reasoning to determine if it is beneficial to use a specific

mounted gun. When it chooses to use a mounted gun it walks to the correct location and

returns the mounted gun through GetUseObject(). When the player stands next to a

mounted gun the HumanoidPlayerController detects that the mounted gun is in range and

handles the logic of the use menu. The HUD takes care of drawing the menu. When the

selection is made it is returned through GetUseObject(). Next time the Humanoid polls

the HumanoidController it will start up the mount process. The HumanoidController is

disabled and the mounted gun receives a MountedGunAIController or

MountedGunPlayerController so that it can be used.

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 5 of 11

A Simple Example

We will illustrate the Model-View-Controller mechanism with an example of a tank.

The tank is split up in an Entity (Tank), EntityRepresentation (TankRepresentation) and a

Controller (TankController).

The TankController has functions like GetAcceleration(), GetSteerDirection(),

GetAimTarget() and Fire(). The AI steers the tank using a TankAIController, the player

uses a TankPlayerController.

The Tank keeps track of the physics state of the vehicle. It looks at the controller and

applies forces to the physical model and responds to collisions. It keeps track of damage

state, turret direction and implements firing logic.

The TankRepresentation draws the tank. It creates sparks particles and corresponding

sound when the tank collides. It plays the engine sound and changes its pitch when the

speed of the tank changes. It creates smoke particles when the tank fires and produces

track marks when the tank is driving. It can also fine tune the position / rotation of the

tracks so that they follow the terrain exactly (without influencing the collision volume of

the tank).

An Example of Simplifying the Game State

When a human fires a gun, the bullets exit from the muzzle of the gun. In SSN67 this

sometimes led to problems. Every weapon had its own aiming animations that were

slightly different. These differences led to inconsistencies with our precalculated cover

positions for the AI. The AI would sometimes think that they could fire from a specific

location but when they got to that position and tried they would shoot into a rock.

To improve the situation we separated the logic of firing from the visual effect (the

tracers). The bullets now exit from a fixed offset (roughly where the shoulder is) based

only on the current position and stance of the humanoid. The tracers are handled by the

EntityRepresentation and come from the muzzle of the gun (which is taken from the

animation) and move in the same direction as the bullet. They slowly converge towards

the real path of the bullet so that the impact point and time for the bullet and tracer is the

same.

For the player it turned out that with our 3
rd

 person camera it sometimes looked like you

could fire over a piece of cover where in reality you couldn’t. We tweaked the firing

offsets for the player so that he was shooting from eye height instead of shoulder height

and fixed the problem.

This simple model in the Entity is easy to use for the AI and guarantees consistency

throughout many bits of code that are related to aiming and firing. It trades complicated

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 6 of 11

code throughout the system for complicated code localized in the EntityRepresentation

where it can only influence the EntityRepresentation itself.

The complete framework

In Figure 1 you can see the complete framework used in SSN67.

Figure 1: Class diagram of the most important classes and their relations. The classes needed for a

Humanoid are provided as an example.

The EntityManager is a container for all Entities. Entities that participate in the game

must be added to the EntityManager. The EntityManager updates Entities at a fixed

frequency (see next section) and facilitates searching.

We allow Entities to be updated by other Entities in special cases where the update order

matters. When a player mounts a mounted gun it is essential that the player is updated

after the mounted gun or else the system will jitter. In this case the mounted gun can set a

flag on the player so that it will not receive updates from the EntityManager and it can

update the player itself.

The RepresentationManager keeps all EntityRepresentations in a spatial hierarchy

suitable for quick visibility determination. It gets a notification from the EntityManager

as soon as an Entity is added or removed and will create or destroy the corresponding

EntityRepresentation.

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 7 of 11

When drawing a frame the RepresentationManager draws all GameViews. A GameView

draws the world for one player. It keeps track of the active camera for a player and uses

the spatial hierarchy in the RepresentationManager to draw all visible

EntityRepresentations. It also draws all non-entities like the static world. After the scene

is drawn it draws the HUD as a 2D overlay. SSN67 could be played split screen

multiplayer but this feature didn’t make it in the final game due to time constraints.

Fixed frequency

The complexity of the scenes in SSN67 didn’t allow for a constant 60 frames per second

so our target was 30 frames per second on NTSC and 25 on PAL consoles. We chose a

constant 15 Hz update frequency for all Entities. Using a fixed frequency update ensures

that all algorithms run exactly the same on all platforms.

A 15 Hz update normally requires an update of all Entities every other frame. The

EntityManager could have been used to perform load balancing by updating half of the

Entities one frame and the other half the other frame. Instead, we opted for a simpler

solution: Updated the high level AI system in frames that we do not need to update the

Entities. The high level AI system calculates behaviors, does path planning and a lot of

ray casting to determine suitable attack / defend positions for the AI.

The balance between the AI and Entities wasn’t exactly ideal in SSN67 as the AI usually

needed much less time. This led to a stuttering frame rate when playing the game. To

solve this problem we did not wait for the VSYNC interrupt in a loop but instead we

would use this time to start updating the entities or AI for the next frame.

If the frame rate drops below 15 frames per second (which can occasionally happen) we

slow down the game time so that it increases with max 1/15
th

 of a second per frame. Not

doing this means that you have to do two update cycles in a single frame, which virtually

guarantees that this frame is also going to take more than 1/15
th

 of a second to calculate.

The profiler showed that doing multiple updates in a single frame can pull the frame rate

down for a couple of seconds afterwards.

Because we update the Entities at a lower rate than the frame rate there is a need for

interpolation to make all movements smooth. At first we were using extrapolation to try

to make Entity movement smooth but this led to very bad results. The used approach is to

remember the previous Entity state and the current state and blend from the previous state

to the current state in 1/15
th

 of a second. This means that there is a constant delay of

1/15
th

 of a second between what the player does and what the player sees. This time is

small and constant so that people don’t notice it.

In SSN67 most Entities were using a skinned model. The following pseudo code shows

how our system was set up in this case. By choosing a good base or helper class the

actual interpolation code only needs to be written once and most Entities do not need to

be aware of interpolation.

// Function called by the EntityManager to store the previous state

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 8 of 11

// of the Entity for interpolation

void ExampleEntity::PreUpdate(float FixedFrequencyTime)

{

 // Store the previous world matrix

 PreviousWorldMatrix = CurrentWorldMatrix

 // Store the previous array of bone matrices

 PreviousBoneMatrices = CurrentBoneMatrices

 // Notify our EntityRepresentation

 EntityRepresentation->PreUpdate(FixedFrequencyTime)

 // Reset changed flag for next frame

 Changed = FALSE

}

// Function called by the EntityManager after PreUpdate to

// update the state of the Entity

void ExampleEntity::Update(float FixedFrequencyTime)

{

 // Update game state (animations, position, etc.)

 …

 // The EnityRepresentation needs to know if anything changed this frame

 // that requires interpolation

 if (CurrentWorldMatrix or CurrentBoneMatrices changed)

 Changed = TRUE

}

// Function called by Entity::PreUpdate to store the previous state

// of the EntityRepresentation for interpolation

void ExampleEntityRepresentation::PreUpdate(float FixedFrequencyTime)

{

 // This flag indicates of for the next 1/15th second the EntityRepresentation needs to interpolate

 MustInterpolate = Entity->Changed

 // Note the current time

 LastChangedTime = FixedFrequencyTime

}

// Function called by the Representation manager to update the state

// of the EntityRepresentation

void ExampleEntityRepresentation::Update(float RealTime)

{

 if (MustInterpolate)

 {

 // Calculate the interpolation fractor, the factor will be in the range [0, 1]

 float Factor = Min((RealTime – LastChangedTime) / FixedFrequencyTimeStep, 1)

 // Use spherical linear interpolation for the world matrix

 WorldMatrix = SLERP(Entity->PreviousWorldMatrix, Entity->CurrentWorldMatrix, Factor)

 // Use linear blending for the array of bone matrices

 BoneMatrices = (1 – Factor) * Entity->PreviousBoneMatrices + Factor * Entity->CurrentBoneMatrices

 }

 else

 {

 // We’re not interpolating so we can simply use the current Entity statie

 WorldMatrix = Entity->CurrentWorldMatrix

 BoneMatrices = Entity->CurrentBoneMatrices

 }

}

In Figure 2 you can see how these functions are called.

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 9 of 11

Figure 2: Sequence diagram showing the flow of update and drawing. The PreUpdate function stores

the previous state of the Entity / EntityRepresentation for interpolation. The Entity::Update function

updates the actual game state. This is all done at 15 Hz. The RepresentationManager updates and

draws the representations at full frame rate.

We used spherical linear interpolation (SLERP) for the world matrix and linear

interpolation for the bone matrices. Linear interpolation doesn’t preserve scale but is a lot

cheaper. As long as animations are fairly smooth you won’t see the difference.

There are a few simple optimizations to be made to this code to make it practical in real

situations. First of all, keeping two sets of world and bone matrices and a reference to the

active one saves copying the matrices. Secondly it is possible to do a lazy update so that

interpolation is only done when the EntityRepresentation is visible.

Another nice optimization that we used is to update the bounding box for visibility

determination at 15 Hz as well. The bounding box is the union of the bounding box for

the previous state and the current state. In general this makes the bounding box only a

little bit bigger but updating the spatial hierarchy only has to be done at 15 Hz.

We use the interpolation system also for animation LOD. The Entity doesn’t update its

animations at 15 Hz but at (15 / N) Hz where N is an integer. When the Entity is close to

the camera it will use N = 1, when it gets further away N increases. The

EntityRepresentation interpolates from its previous animation state to the current

animation state in N Entity updates instead of in 1 Entity update. This requires a second

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 10 of 11

interpolation factor to be calculated in the EntityRepresentation. The rest of the algorithm

stays exactly the same so the LOD system practically comes for free. As long as the

Entity is loosely coupled to its animations there will be no side effects.

Most common problems in SSN67 with the interpolation scheme were when objects had

to be attached to a bone of another object. A gun, for example, would jitter in the hand of

a soldier because there was a slight difference between the interpolation of the gun (an

Entity) and the hand. We solved this problem by allowing EntityRepresentations to

override their world matrix with the interpolated bone matrix from another

EntityRepresentation.

Another common problem is when sudden changes in position or animation happen, for

example, when a character needs to rotate 180 degrees in one frame. To solve these

problems simply turn off interpolation for one update by setting PreviousWorldMatrix =

CurrentWorldMatrix and PreviousBoneMatrices = CurrentBoneMatrices.

Conclusion

Using the Model-View-Controller mechanism has a lot of benefits when it comes to

separating functionality into manageable blocks. The main drawback is that there will be

some code and memory overhead to support an Entity and EntityRepresentation class for

every game object.

The interpolation system doesn’t come for free, but, looking at our profile sessions

interpolation it was a lot cheaper than updating the whole system at the full frame rate.

Also, interpolation sometimes leads to visual glitches that require some effort to fix them.

The Model-View-Controller mechanism fits nicely with other often used techniques like

making a deterministic game. A deterministic game has a fixed set of input parameters

(like controller input + random seed) and when given the same inputs it will reproduce

the same results every time. In this case the code that needs to conform to this (Entity) is

easily separated from the code that doesn’t need to conform (EntityRepresentation). The

Controller clearly defines the input parameters of the system.

Another thing that the Model-View-Controller architecture is really good at is online

multiplayer. Because Entities maintain minimal state it is much easier to extract the state

that has to be sent over the network. Experiments that we did after shipping SSN67 show

that this is indeed the case.

It is our opinion that this design played no small part in allowing us to meet every single

deadline and milestone on the SSN67 project. For our next project(s) we have started

using the same system again.

Acknowledgements

The Guerrilla Guide to Game Code – Jorrit Rouwé – Page 11 of 11

I would like to thank Kasper J. Wessing, Remco Straatman, Frank Compagner, Robert

Morcus, Stefan Lauwers and all the other coders at Guerrilla that helped create the

SSN67 architecture and this article.

References

• [SSN67]: Shellshock Nam ’67 – Developed by Guerrilla, published by Eidos

(http://www.shellshockgame.com/)

• [Bloom]: Stranger’s Wrath – Charles Bloom – Speech at game|tech 2004

(http://www.cbloom.com/3d/game_tech_04.zip)

• [Butcher]: Halo 2 – Chris Butcher – Speech at game|tech 2004 (http://www.game-

tech.com/)

• [Stelly]: Half Life 2 – Jay Stelly – Speech at game|tech 2004 (http://www.game-

tech.com/)

• [DP]: Design Patterns: Elements of Reusable Object-Oriented Software - Erich

Gamma, Richard Helm, Ralph Johnson and John Vlissides

(http://www.amazon.com/exec/obidos/ASIN/0201633612/002-1551927-3481617)

• [LUA]: The LUA scripting language (http://www.lua.org/)

