Containing the‘Flwo?Ci-;;p

e
o,
-4 -

Content Manageméngif;):r;Halo 2 and
Beyond Rem |
by Mat Noguchi -

~0 T

What is Halo? At its core, Halo is a world simulation. Instead of trying to force a rigid
structure onto players that defines the only way to play a game, we try to give the
player a giant sandbox and let them play as they want.

In the Front Lines

Created by
David Galindo
http://halo2.vertigogaming.net

The way we accomplish this is to treat the player as is simply another stimulus driving
the overall state of the game. Ultimately, we don't really need the player to drive some
of the more complex interactions in Halo. You could even remove the player from
much of the game and still watch battles unfold between the Humans and Covenant. In
fact, someone did just that.

This is a fan made movie featuring the Marines. Credit goes to David Galindo for this
beautiful expose of the Halo engine

Halo: Content Exploded

In order to even attempt to build this complete experience, we need to have not only a
high level of detail, but a wide breadth of detail as well. It means that we need to make
animations for every action a character can perform. It means we have to make effects
for every material vs material interaction possible in the game, from plasma bolts hitting
rusted metal or rocks hitting water to tires skidding on sand or purple metal grinding
against wood. It means everything must make a sound, and every sound must have
enough permutations to avoid repetition. It means that we need to have combat
dialogue for every possible interaction between every speaking character in the game.

In other words, we need content.

Halo: Content Exploded

Halo 1

14,352 files/2.1 GB
— sound: 4407/800 MB
— bitmap: 1959/574 MB
— geometry: 385/44 MB
— animation: 225/17 MB

A lot of content.

These figures represent the total number of asset files needed to run the game
excluding raw source data, like 3d Studio MAX files and photoshop textures. For Halo
1 we had a reasonable sized content tree. However, evolving our sandbox turned out
to be a much bigger problem than we thought.

Halo: Content Exploded

Halo 1 Halo 2

14,352 files/2.1 GB 39,000 files/11.6 GB
— sound: 4407/800 MB — sound: 12,000/7500 MB
— bitmap: 1959/574 MB — bitmap: 6,440/1500 MB
— geometry: 385/44 VB — geometry: 1,984/510 MB
— animation: 225/17 MB — animation: 903/370 MB

We saw an increase not only in the complexity of textures and geometry, which is to

be expected with an upgraded graphics engine; we saw an even bigger explosion in
the sheer amount of sound and animation data as well. In fact, when we integrated
combat dialogue content into our game it added so much data that we had to
rearchitect several layers of our resource system to handle the deluge of sound.

Increasing content demands can crush
the game development process.

e ————]
= T ',fi: s

"‘-\e ‘k : —

) ".

r

Clearly content will continue to be a major component of game development. It will
only get worse as we increase the depth and breadth of the gameplay sandbox.

As the vanguard of game development, we programmers have the capability of
meeting this challenge head on. We pretty much have to be, since we're the ones who
take the content and use it to drive the game.

How do we do that? The answer is content managemen

Content Management

The process by which you create,
organize and access non-volatile data
necessary at runtime to drive a game
engine.

In simpler terms, programmatically managing game assets. In my professional opinion,
content management was one of the most important aspects of Halo 2's development.
That may be because that's what I get paid for, but that's besides the point.

For Halo 2, we were fortunate enough to have a system that handled all our resource
management. We call it the tag system.

Tags: The Bungie™ Way

The tag system has its origins from Myth as a platform agnostic resource system, but it
has evolved extensively since then.

Tags: The Bungie™ Way

. TAG_GROUP(...)

At its core, the tag system defines a set of interfaces and types that we use to manage
C structs in a generic fashion. We do this by creating a schema in code for every C
struct we wish to manage via the tag system; these schemas are called tag_groups.

Tags: The Bungie™ Way

/f sound_environment.h

typedef float real,
struct sound_environment
{
real room_intensity;
real room_intensity hf;
real room_rolloff _factor;
real decay_time;
real decay _hf ratio;
real reflections_intensity;
real reflections_delay;
real reverb_intensity;
real reverb_delay;
real diffusion;
real density;
real hf_reference;

For a simple example, let's take a look at our sound_environment tag. In code, we
have a sound_environment struct. To expose this struct to the tag system, we define a
TAG_GROUP in C with a little bit of preprocessor magic like so. The tag_group
definition provides the tag system with a straightforward mechanism for type
reflection; we use reflection to perform universal tasks on tags, such as automatic
serialization or building up editors.

Tags: The Bungie™ Way

/f sound_environment.h /f sound_environment.cpp
typedef float real; TAG_GROUP(
struct sound_environment sound_environment,
{ ‘'snde’,
real room_intensity; sizeof(sound_environment))
real room_intensity hf; {
real room_rolloff factor; { field_real, "room intensity"},
real decay_time; { field_real, "room intensity hf"},
real decay_hf ratio; {_field_real, "room rolloff"},
real reflections_intensity; {_field_real, "decay time" },
real reflections_delay; {_field_real, "decay hf ratio"},
real reverb_intensity; { field_real, "reflections intensity:dB"},
real reverb_delay; { field_real, "reflections delay" },
real diffusion; { field_real, "reverb intensity:dB"},
real density; {_field_real, "reverb:seconds"},
real hf_reference; { field_real, "diffusion™},
% { field_real, "density"},
{ field_real, "hf reference™},
%

For a simple example, let's take a look at our sound_environment tag. In code, we
have a sound_environment struct. To expose this struct to the tag system, we define
a TAG_GROUP in C with a little bit of preprocessor magic like so. The tag_group
definition provides the tag system with a straightforward mechanism for type
reflection; we use reflection to perform universal tasks on tags, such as automatic
serialization or building up editors.

Tags: The Bungie™ Way

M tag2.sound_environment

This is how the sound_environment tag would be edited in Guerilla, our tag editor.

Tags: The Bungie™ Way

- TAG_GROUP(...)

— tag_group *"tag_group_get(
tag group_tag)

— long tag_load(
const char *name,
tag group_tag)

— void *tag_get(
long tag_index,
tag group_tag)

These are a few of the functions that we use to access and manipulate tags. The most
important of these is tag_get(...). It allows us to represent resources universally as
handles, as well as providing a standard interface for accessing tags. I'll revisit the
importance of this later on.

Tags: The Bungie™ Way

- TAG_GROUP(...)
. TAG_BLOCK(...)

To allow for more complex data structures than a simple C struct, we also have a type
called a tag_block. A tag_block is similar to a tag_group; it defines a resizeable array
whose elements correspond to a C struct. Since both a tag_group and tag_block can
contain any set of fields, including tag_blocks, we can describe almost any type of
structured data hierarchy. By providing a generic container type, we also push the

responsibility of resource memory management exclusively into the realm of the tag
system.

Taas: The Bungie™ Way

/f camera_track.h

struct s_camera_track_control_point
{
real_vector3d position;
real_quaternion orientation,
h
struct s_camera_track_definition
{
unsigned long flags;
struct tag_block control_points;
h

As an example, this is how we define our camera track tag. Here's the C struct
definition. Followed by the tag_group definition.

Tags: The Bungie™ Way

/f camera_track.h

struct s_camera_track_control_point

{
real_vector3d position;
real_quaternion orientation,

h

struct s_camera_track_definition

{
unsigned long flags;
struct tag_block control_points;

|5

/f camera_track_definitions.cpp
TAG_BLOCK(

I3

camera_track_control_point_block,
16,
sizeof(s_camera_track_control_point))

{ field_real_vector3d, "position™},
{_field_real_quaternion, "orientation"},
{ field_terminator}

TAG_GROUP(

camera_track,
‘trak’,
sizeof(s_camera_track_definition))

{ field block, "control points”,

~ &camera_track_control_point_block),
{_field_terminator}

'

As an example, this is how we define our camera track tag. Here's the C struct
definition. Followed by the tag_group definition.

Tags: The Bungie™ Way
Accessing tag_block elements

s_camera_track_definition *camera_track= ...;
long control_point_index= ...;
s_camera_track_control_point “control_point=
TAG_BLOCK_GET_ELEMENT(
&camera_track->control_points,
control_point_index,
§_camera_track_control_point);

To access elements of a tag_block, you have to use a macro. However, this is an
implementation detail that can easily be abstracted out via more preprocessor macros or
through templated wrappers on top of the tag_block structure.

Tags: The Bungie™ Way

M tag6.camera_track* X o x|

And here's how it would be presented in Guerilla. As you can see, we have a simple
interface for manipulating the tag_block as an array of elements.

Translate assets between text and
binary.

weapon obyectsiweaponsimeleelenergy _bladelenergy biade

2
flags woed Tiags 0
bounang radus real 0.2%
bounang offset real pont g 0.15,0,0
BCCHBALon S50 real '
Ghimap shadow maode anum del it
SWONLOrRr S0 char enum smal
Gy AAMIC Bgh! Sphece racs e 0
Gy namic Ight sphece of fset real pont 3¢ 0.0.0
def aut model varant stnng i3
mocel 1Ag relececce

s\weapons\meleelenargy _bladelenergy _biade himt
OMct 1M el acence e X
er shader tag rederence yyyy
ton effect tag redecence effe
matecal ¢liecty 18g refacence
STACIMAMANRS ICONC IS aADoAs Lanergy _Swoed foot
& propecies DioCk OOpEC!_8i_propacties Dlock. 1
element O
M ags Keg 1lags 0
& Ly pe name sinng swoed
al sie enum def auit
D P Speed tum NONE

end slament O

We can also walk the tag definition to translate between various tag representations; in
this case, we can take the raw binary data for the energy sword tag and translate it to
and from text with ease. We don't do this operation often, but it's useful to analyze
how content changed in source control. We had an intern go in and add this capability
to our source control process late in the project; it helped us immensely in tracking
changes, especially as we started locking down the content and instituted a peer-
review checkin policy.

Tags: The Bungie™ Way

- TAG_GROUP(...)
. TAG_BLOCK(...)
. TAG_REFERENCE(...)

We also have a type to allow tags to explicitly define external dependencies, called a
tag_reference. A tag_reference is essentially a typed persistent pointer that is
maintained by the tag system when a tag is loaded. A tag_reference can be further
constrained to point to tags of a particular tag_group. This simple abstraction is what
powers much of our game asset management.

Tags: The Bungie™ Way

/f item_collection.h

struct item_permutation_definition
{
real weight;
struct tag_reference item;
string_id variant_name;

¥

struct item_collection_definition
{
struct tag_block permutations;
short spawn_time;
short pad;

b

Here's a tag that uses tag_references, the item_collection_definition struct. The
multiplayer engine uses this tag to determine what kinds of items or weapons can

spawn at a particular location.

Tags: The Bungie™ Way

/f item_collection.h

struct item_permutation_definition

{
real weight;
struct tag_reference item;
string_id variant_name;

{

struct item_collection_definition

struct tag_block permutations;

/litem_collection.cpp
TAG_BLOCK(
item_permutation,
32,
sizeof(struct item_permutation_definition))

{_field_real, "weight "},

{ field_tag reference, "item ",
&global_item_reference),

{ field_string_id, "variant name™},

{ field_terminator}

%
TAG_GROUP(
item_collection,

short spawn_time; ‘itef',
short pad; sizeof(struct item_collection_definition))
)' {_field_block, "item permutations”,
&item_permutation),
{ field_short_integer, "spawn time"},
FIELD_PAD(1 * sizeof(short)),
{ field_terminator}

¥

Here's a tag that uses tag_references, the item_collection_definition struct. The

multiplayer engine uses this tag to determine what kinds of items or weapons can

spawn at a particular location.

Tags: The Bungie™ Way

dom I _j Upen I l",r/:'l‘ Claar I
e

spawn bme (n seconds, 0 = de ﬁ

i)

M tagY.item_collection® 3 3 Alm}.l

From this definition we generate the following interface in Guerilla. To edit a

tag_reference, we simply invoke the common file dialog from Windows.

s BM "Sa .

With explicitly defined external references, we can analyze and operate on complex
resource hierarchies as a directed graph. We use this graph representation when
loading tags for gameplay; to load a tag, we walk its dependency graph using a depth
first search and load each tag as we go. The tag_reference encourages design through
composition; it is very easy to connect game assets together by editing tag_references,
and it allows for quick prototyping from existing content.

For example, this is how we created the warthog variants; the chaingun and gauss
turrets were created as separate objects and attached to the warthog as opposed to
being modeled as part of the warthog.

This is also the typical method used to hack Halo on the Xbox; by directly
manipulating tag references.

Load levels from a single resource.

With most of our game assets defined as tags, none of our leaf game systems (e.g.,
physics, sound, rendering, or AI) manage their respective assets; all resources are
handled by the tag system; tags must be accessed through handles, and all tag memory
1s managed by the tag system. We also enforce a read-only view of tag data for most
game systems; the main exception being physics due to how we integrated Havok into
our engine. To facilitate this separation of control between the game and the tag
system, we only explicitly load two tags: the globals tag and the scenario tag. The
scenario tag is the level representation. The globals and scenario tags are available for
any game system to access, so for a game system to have access to a particular tag, it
must be accessible through the globals tag or the scenario tag.

OOPS!

However, this means that occasionally tags get referenced into a particular level and
are then forgotten. This is how we managed to ship Halo 1 with the Engineer, and
Halo 2 with the Flood Juggernaut, two characters that were cut before we shipped.

Using scripts to work around singular
loading process.

There is another unfortunate consequence of this singular level loading behavior.
Because the only supported way to run the game requires a level to load, it has been
very difficult for us to develop interactive tools for viewing and editing data that
doesn't need a level loaded, e.g., interactively editing particle effects or viewing
animations. What usually happened is that we added scripting commands in the game

engine to manually load a given tag and use the automatic reloads to update it on the
fly.

<Demo of drop object.>

Replace missing content at
runtime with placeholder assets.

We can also take advantage of a standard recursive load process by customizing load
behavior depending on various runtime conditions. One helpful thing to do is to
substitute missing tags at runtime. If we cannot find or load a specific tag, we can
instead load an appropriate placeholder tag; this helps in many ways, the most obvious
is that it is easy to identify missing content.

We made this a default property of the tag loading process. For example, if I try to

drop an object tag that does not exist, thevgame will drop this placehoider objeét
instead.

Find and fixup references to missing
data.

x3 x
LA R) T A G e =0 derence: - N
[T benap objectsicharacterslackalibtmagsaackal_sheeld_nose incompetent | bitmaps) jackal_shicld_ncise
[T benap effectsidacalibulet_Folesibtmapsisenting_cagtan_beam st cremove reference> —
| [T tenso uihudttmapsionperihud retcies_scope <remove reference >
[T ben vihudbimapsisniperisniper_scope_mask2 <remove reference>
. btnap scenanios|bnapsy crerunner indstrafmet sisadder lqm refererce > :]
[T temap objectsicharactersiiachalibtmapsiiackal_shield_offset
[T bmsp uihudttmepsibesm rfleibaam_scope_mas rem (>
[T b scenariosibtmapeifcrerunnerindustrialimetdisifist_generic_ i cremove reference >
[T benap scenaniosishiosipenenclspace\btmapsistars_derde _mask <remove reference >
[T bemap scenaniosldecoratorsiurban_debeisidemapsiurban_detris <remaove reference >
[T biwnap scenanosibitmaps'y effection_maps'forerunnes_nteniors <remave relerence
[T tenap scenanosibmapsf orerunnerindustrafmet sis\pared f <remove reference >
[T bensp uihudttmepsisnper|snper_scope_mask_sm <remaove reference >
[T benap scenaniosibtmapsy eflection_maps'pefiection_ss_halwey 28t Cremove reference >
L[ben scenislobipctsicovenareipendertisihob_panesitanspsy cremovereleremce> P AT
{m shere BB \: o bk » o ol n'l-:::._
referenced by:
| shader siiadder_ganerk
|
Ourptofie | Coced | [0k]

Replacing missing data at runtime is great, but let's say that I'm an art lead and I want
to know just how much missing data there is in the content tree. If we load all the tags
in the content tree and treat the tag_references as directed links, we can generate a
graph and inspect that directly to find references to missing data.

<Demo of fix dependencies>

As you can see, the content tree I have here has a wide range of dangling references. If
I wanted to, I could use this tool to redirect dangling references to existing content or
clear them all-together. We can use the same information to determine simple data

relationships such as, "How many tags refer to this blood splatter effect?"

<Demo of find referrent tags>

110E8C dI'€ d COUpPIC Ol SIIIPIC USES O1 grdpil dndlysis 01 COILCIIL.

Duplicate or move asset
hierarchies.

We can also use the dependency graph to perform more complex content operations.
A quick way to prototype new gameplay ideas is to create a copy of an existing tag
and tweak various values. I can accomplish this easily by just copying the file through
Explorer, but what if I want to modify a whole slew of values across the tag
hierarchy? What if I want to create a new variation of the warthog?

If I generate a dependency graph between a selection of tags, I can copy the tags to a
new location and fixup all the references between the selected tags.

<Demo of copy tags.>
On a more global scale, we can use the dependency graph to move tags around the file

system without breaking existing dependencies. We have done this on more than one
occasion to migrate to new content directory schemes.

DalAaaA racnilircrane At Aanv firmana

ITiIivau 1TouvuilvCo aL ally uiiG.

DEMO

Since we only allow access to tag data through handles provided by the tag system,
any tag can be reloaded or modified at any time during the lifetime of a game quickly
and easily, without adversely affecting other game systems. To make this system more
robust, we have a single entry point for reloading tags in case we have a need to have
custom cleanup or initialization code when a tag reloads.

This behavior is critical for artist iteration. To demonstrate the power of this system,
we're going to go upgrade a few weapons.

<Weapon demo>

ReadDirectoryChangesW is your
Win32 friend.
DEMO

I'm sure readers of Game Developer have heard about our super magical monitoring
tools. For those who haven't, we have tools that monitor the file system and reimport
and synchronize content on the fly. We accomplish this little piece of magic using
ReadDirectoryChangesW, a function that lets you monitor changes on a directory or
volume. This is a very brute force way to propagate content changes, but it allows us
to change what programs we create content in without having to rewrite export
plugins.

To demonstrate this powerful tool, I'm going to show you how we would go about
creating a new vehicle from an existing one.

<Demo of yellow warthog>

Optimize storage layout.

Clearly our tag system is a powerful resource management system for development
builds. It is also a great system for optimizing content for our shipping build.

One powerful aspect of our tag system is the complete separation between resource
access and resource storage at runtime. Accessing tag data must be done through the
tag system; it can provide that data through any arbitrary mechanism: caching the data
in memory, generating it at runtime, streaming it over the network, etc. As such, we
can completely change the underlying implementation of the tag system without
affecting any other game system that relies on the tag system. The fact that our editing
build runs from multiple single files is an implementation detail; it is not a necessary
component of the tag system itself.

Generate a flat file to load all
resources for a level.

tag_get(...) count
8 gel) count address / :

address definition
definition T

{55 count
address /

definition
! A
s COunE: ..
address
definition
|

IManrv lavont J . . .Iiil—.

{o] (3] (S B EN1 SN BRH

j

gt '8 NS ([AARIRENVNNARE ARNNYE

Our single file based tag system is great for editing the game, but to run on retail
Xboxes we need to optimize the resource format so that it loads quickly with a minimal
amount of memory; loading from multiple single files would clearly have a lot of
runtime overhead, as well as rebuilding tags from scratch every time we run a new
level. Since all tags can be referenced globally by a handle, once we load a level we
have all the assets we needed to load it again. And, because we have the schema for
every loaded tag, we know how to serialize each tag to a fixed runtime address without
having to write custom code. When we build the final resource file, which we call a
cache file, we simply dump all loaded tags into a giant buffer and write that out to a
single file. At runtime, we just need to read that file into a fixed address before we start
the level,; all other runtime systems behave the same. We do have a few custom steps
for stripping out and storing demand loaded data (namely textures and sound), but the
overall amount of work to implement the shipping resource files is extremely
straightforward.

Generate a flat file to load all
resources for a level.

Memory layout

File layout)

Our single file based tag system is great for editing the game, but to run on retail
Xboxes we need to optimize the resource format so that it loads quickly with a minimal
amount of memory; loading from multiple single files would clearly have a lot of
runtime overhead, as well as rebuilding tags from scratch every time we run a new
level. Since all tags can be referenced globally by a handle, once we load a level we
have all the assets we needed to load it again. And, because we have the schema for
every loaded tag, we know how to serialize each tag to a fixed runtime address without
having to write custom code. When we build the final resource file, which we call a
cache file, we simply dump all loaded tags into a giant buffer and write that out to a
single file. At runtime, we just need to read that file into a fixed address before we start
the level; all other runtime systems behave the same. We do have a few custom steps
for stripping out and storing demand loaded data (namely textures and sound), but the
overall amount of work to implement the shipping resource files is extremely
straightforward.

Generate a flat file to load all
resources for a level.

tage getout)

Our single file based tag system is great for editing the game, but to run on retail
Xboxes we need to optimize the resource format so that it loads quickly with a minimal
amonnt of memaorv: loadine from mnltinle sinole files wonld clearlv have a lot of

SraaAv wraav A aaawasaa I I T i S R i B

runtime overhead, as well as rebuilding tags from scratch every time we run a new
level. Since all tags can be referenced globally by a handle, once we load a level we
have all the assets we needed to load it again. And, because we have the schema for
every loaded tag, we know how to serialize each tag to a fixed runtime address without
having to write custom code. When we build the final resource file, which we call a
cache file, we simply dump all loaded tags into a giant buffer and write that out to a
single file. At runtime, we just need to read that file into a fixed address before we start
the level,; all other runtime systems behave the same. We do have a few custom steps
for stripping out and storing demand loaded data (namely textures and sound), but the
overall amount of work to implement the shipping resource files is extremely
straightforward.

Merge duplicate data.

tag_get(...) {7} count
count address
address definition

definition goiy

/ 1
.3 t
agg‘rjgss /
/

definition
AR
count
address
definition
g2}

File layout)}

We try to keep game systems from modifying tag data. Since we don't need to worry
about most systems modifying tag data, we can go ahead and merge duplicate tag
memory when we are building the cache file. We do this by aliasing tag block
elements when we detect duplicate binary data. When we shipped, this process netted
us an additional 1 MB per level.

Remove unnecessary data.

struct tag block

long count;
void *address;
const struct tag block definition *definition;

struct tag referance

tag group tag;
long tag_index;
const char *name;
long name_length;

File layout

We also used the tag layout to further optimize the resource layout for our DVD build.
Tag_references, tag_blocks, and tag_data contain members that are not necessary for
our shipping build. As you can see from the declaration of a tag_block, there is a
pointer to the tag_block's definition; this pointer is used to map type information to a
tag block. Since tags cannot be modified in the shipping build, there is no need to keep
this member around. We stripped this data when we built a cache file. For a typical
Halo 2 level, this saved ~700k to IMB.

Like everything else in game development, we did have a few issues with the tag
system during Halo 2. One could easily classify the problems into two categories:
problems of design, and problems of scale. I'm going to concentrate on scalability
problems, mainly because those are more interesting.

Katamari Noguchi

O

_

One design problem that turned into a scalability problem late in development centered

O

around versioning. Simply put, w\e didn't have a good versioning system tor tags for
Halo 2. This in and of itself would not have been a problem except for how we went
about future proofing tags in Halo 1. In order to make sure we could add fields to tags,
we would often insert lots of unused padding into tags as we created new ones to make
sure we could co-opt that space later. This wasn't a big deal for Halo 1, but for Halo 2,
this unused space started to add up as our tag counts exploded. On two separate
occasions I had to go in and strip out the unused space in all the tags in our content
tree. You can imagine this being a pretty painful process.

Combat dialog destroys everything

The combat dialogue we had for Halo 2 was one of the most horrific data sets we
could have ever created for any game for three major reasons:

Increased complexity of the combat dialog system required an equal increase in
quantity of combat dialogue sounds.

Spoken dialog had multiple language versions embedded in a single sound tag for
localization purposes.

Raw sound data and tag data were interleaved throughout the sound tag.

< < <

These three factors caused the Windows file system to break when we added combat
dialogue for all the major characters. Running a level now required us to read in a
relatively small amount of data over thousands of files with a non-predictable access
pattern. This kind of interaction with the file system managed to thrash the file system
cache every time we loaded a level that had characters with combat dialogue, which
inconveniently happened to be every single campaign level. This had the unfortunate
side effect of exploding level loading times on the PC for everyone.

The best solution we came up with was to unmap combat dialogue for most of the
artists. Which is to say we didn't really solve this problem.

Abstract

Creating an immersive gameplay environment requires more than utilizing the
latest shader technology or implementing cutting edge-Al; it requires the
content to drive it. As games become bigger and better, content management
becomes more and more important. With 12 GB of just in-game assets spread
across 39,000 files, we had to build custom tools to effectively handle content
management for Halo 2. Even simple concepts like just-in-time editing of game
assets or simply loading data from disk turn into complex beasts of
implementation at that scale.

Introduction

As games become more and more complex and as hardware limitations have
less and less of an impact on the quality of a game, future game innovation will
come less from technology and more from content. For the purposes of this
paper, content management is the process by which you create, organize and
access non-volatile data necessary at runtime to drive a game engine. Content

management applies to both runtime usage and persisteht storagé of game
assets. For Halo 2, we were fortunate enough to have a mature persistent object
system that handled all our resource management.

The tag system

A tag is the fundamental unit of our resource system. It corresponds to a single
file on disk and a C structure in memory. Our tag system is similar to XML;
where XML defines data as an XML file and its definition as a schema, we
define data as a tag and its definition as a tag_group. However, there are two
main differences: XML is stored as text while a tag is a stored as binary data,
and an XML schema is defined in a text file while a tag_group is defined in
code. We define tag_groups in code using a set of preprocessor macros that
break down the corresponding C structure into its component types, €.g.
integers, floats, strings.

Example 1: Defining a simple tag

Given the following C structure:
typedef float real;

struct sound_environment

{
real room_intensity db;
real room intensity hf db;
real room rolloff factor;
real decay time;
real decay hf ratio;
real reflections_intensity_db;
real reflections delay;
real reverb intensity_db;
real reverb delay;
real diffusion;
real density;
real hf reference;

We can define the corresponding tag_group in C code as follows:

const unsigned long SOUND_ENVIRONMENT TAG= 'snde';

TAG_GROUP (

sound_environment,
CNATINTN AW TDNANTMENT MAC

WUULINL LNV LNNVINTLLWIN L LTy

sizeof (sound environment))

{

}:

{_field _real, "room intensity"},

{ field real, "room intensity hf"},

{ field real, "room rolloff (0 to 10)"},

{ field real, "decay time (.1 to 20)" },

{ field real, "decay hf ratio (.1 to 2)"},

{ field real, "reflections intensity:dB[-100,10]"},
{ field real, "reflections delay (0 to .3):seconds" },
{ field real, "reverb intensity:dB[-100,20]"},

{ field real, "reverb delay (0 to .l):seconds"},
{_field_real, "diffusion"},

{ field real, "density"},

{ field real, "hf reference(20 to 20,000)},

The sound_environment tag_group can then be inspected at runtime; our game
asset editor, Guerilla, uses this information to generate a simple editing
interface:

M tag2.sound_environment a

=10/ x|

priofity

room intensity

room intensity hf

room rofloff (0 to 10)
decay time (.1 to 20)
decay hf ratio [.1 to 2]
reflections intensity
reflections delay (O to .3)
reverb intensity

reverb delay (O to 1)
diffusion

density

hf reference(20 to 20,000)

E =l
b a8
OO

0 derio01g
FJ— seconds
[0 derio020
rl]_—— seconds
e
|

0 Hz

L 27

To allow for more complex data structures than a simple C struct, we also have
a field type called a tag_block. A tag_block is similar to a tag_group; it defines
a resizeable array whose elements correspond to a C struct. Since both a
tag_group and tag_block can contain any set of fields, including tag_blocks,
we can describe almost any type of structured data hierarchy.

Example 2: Defining a more complex tag

C struct definition:
struct s_camera track control point

{
real vector3d position;
real quaternion orientation;
}i
struct s_camera_ track definition
{
unsigned long flags;
struct tag block control points;
bi

Tag group definition:

const unsigned long CAMERA TRACK_ DEFINITION TAG= 'trak';

TAG_BLOCK(

camera_track_control point_block,

k _maximum number of camera track control points, sizeof
(s_camera_ track control point))

{
{_field_real vector3d, "position"},
{ field real quaternion, "orientation"},
{ field terminator}

}i

TAG_GROUP (

camera_track,
CAMERA TRACK DEFINITION_ TAG,
sizeof (s _camera track definition))
{
{ field block, "control points",
&camera_track control point block},
{ field terminator}
1.

Editing interface:

B
£33 Deleto Al
EOsan 1o \[o k[0
ofiertaton ijo ijo k[0 wlo
< [z

To access elements of a tag_block, you have to use a macro:

s_camera_track definition *camera track= ...;
long control_point_index= ...;

s_camera_track control point *control point=
TAG_BLOCK_GET ELEMENT (

&camera_ track->control points,

control point index,
s_camera_track control point);

This is an implementation detail that can easily be abstracted out via more
preprocessor macros or through templated wrappers on top of the tag_block
structure.

We also have a tag type to allow tags to cross-reference one another, called a
tag_reference. A tag_reference is essentially a typed persistent pointer that is
maintained by the tag system when a tag is loaded. A tag_reference can be
further defined to point to tags of a single tag_group or multiple tag_groups.
This simple abstraction is what powers much of our game asset management.
For example, if a UI element needs a texture to render correctly, its tag_group
would have a tag_reference reference field to a bitmap tag instead of
embedding a bitmap directly.

Example 3: Defining a tag that depends on other tags

C struct:
struct item permutation_definition
{
real weight;
struct tag reference item;
string id variant name;

struct item collection_definition

{
struct tag block permutations;
short spawn time;
short pad;

}i

Tag group definition:
extern const unsigned long ITEM DEFINITION TAG;

TAG _REFERENCE DEFINITION (
global_ item reference,
ITEM DEFINITION_ TAG);

#define MAXIMUM NUMBER OF PERMUTATIONS PER ITEM GROUP 32
#define MAXIMUM NUMBER OF ITEM GROUPS 128

TAG_BLOCK(

item permutation,

MAXIMUM NUMBER OF PERMUTATIONS PER ITEM GROUP, sizeof(struct
item permutation definition))

{
{_field_real, "weight "},
{_field _tag reference, "item ", &global_ item reference},
{ field string id, "variant name"},
{_field_terminator}
}i
TAG_GROUP (

item collection,
ITEM COLLECTION DEFINITION_ TAG,
sizeof (struct item collection_definition))

{

{ field block, "item permutations", &item permutation},

{_field_short_integer, "spawn time (in seconds, 0 =
default)"},

FIELD PAD(l * sizeof(short)),

{_field_terminator}

Editing interface:

Il

VENarE name I
spavn tme [tecond:, 0 = de [6

o 27

Both tag_blocks and tag_groups can also have load-time processing behavior
defined in code, e.g., to optimize data structures or initialize runtime variables.
We refer to this load-time processing as postprocessing. For example, our
sound effect tag generates different C structs at runtime depending on the type
of sound effect; a distortion effect would take the high-level distortion
parameters to create the DirectSound distortion parameters and store that data
in the tag. Our shader system has a similar mechanism to take a high level
shader definition and optimize it into a more code and hardware friendly format
at runtime.

All this manual maintenance of the tag system may seem like a lot of tedious
work, but it gives us the benefits one would normally get with a native
reflection system. We can write code that analyzes or transforms any tag in a
generic fashion. Many operations that can be defined at a high level using type-
agnostic pseudocode can be implemented in about the same amount of C/C++
code that manipulates the tag system.

One obvious application of the tag system is the ability to serialize a tag from
memory to disk as well as restore a tag in memory from the disk without
having to write custom code for each particular asset type; loading a tag is a
fairly straightforward process:

1. Find the tag_group corresponding to the tag we wish to load
. Load the tag into memory

3. Walk the tag hierarchy and postprocess each tag_block element using a

post-order traversal

4. Walk the tag hierarchy again and for each tag_reference find or load the

corresponding tag (starting at step 1)

5. Postprocess the tag using the postprocess function defined its tag_group
This load process ensures that once a tag is loaded, it has every tag it depends
on also loaded. This process also allows for tags that are multiply referenced to
be loaded once at runtime. We can also provide default tags for tag_references
that point to non-existent tags. For example, we have a default object tag that is

a horribly textured sphere; should any tag reference a non-existent object tag,
we show the ball instead.

The payoff]s]

Our tags system as a persistent object system helped us tremendously in the
development of Halo 1 and 2.

Level loading process

With most of our game assets defined as tags, none of our leaf game systems
(e.g., physics, sound, rendering, Al) manage their respective assets; all
resources are handled by the tag system. To facilitate this separation of control
between the game and the tag system, we only explicitly load two tags: the
globals tag and a scenario tag. The scenario tag is basically the level
representation. The globals and scenario tags are available for any game system
to access, so for a game system to have access to a particular tag, it must be
accessible through the globals tag or the scenario tag.

This consistent loading behavior across the entire game provided us a single
entry point for loading a level for gameplay, lightmapping, optimizing for a
DVD build, or any other process we wish to apply to an entire level. However,
because the only supported way to run the game requires a level to load, it has
been very difficult for us to develop interactive tools for viewing and editing
data that doesn't need a level loaded, e.g., interactively editing particle effects
or viewing animations. What usually happened is that we added scripting
commands in the game engine to manually load a given tag and use the
automatic reloads to update it on the fly.

Automatic reloading of single tags

Since we only allow access to tag data through handles provided by the tag
system, a tag can be reloaded or modified at any time during the lifetime of a
game quickly and easily, without adversely affecting other game systems. To
make this system more robust, we have a single entry point for reloading tags
in case we have a need to have custom cleanup or initialization code when a
tag reloads. For example, we pushed data from tags into Havok, a third party
physics system. Any time we reloaded a physics tag we had to release all
references Havok had on the tag before unloading it from memory, and re-
associate those references once the tag was fully reloaded.

TAav Aanve D laiilde svia nan anacilsr Aatant Rla Ahananac iaina tha Gla axratana

1'Ul vul I '© vulud, wo valli Cabll_y UcCLouLtL 1110 uuauéco ublllé LLIC 111C D_y DLCILLL
change notification system. For our Xbox builds, the process is a little more
complicated. Our Xbox build cannot use the same file paths as our PC build for
performance reasons related to the Xbox's simplified file system. In order to
accommodate this restriction, we encode tag paths into a number and generate
a directory and filename based on that number. We store this information for all
tags on the Xbox in a giant file called the tag file index and use that mapping at
runtime to locate tags based on their full path. We use that information every
time we synchronize tags from the PC to the Xbox so that we only need to
copy the tags that have changed. We call this synchronization process xsync. If
the game is running on the Xbox during an xsync, it can detect when the index
file updates and reload those tags that have changed in the process. Xsync is an
integral part of our content pipeline; artists and designers can changes made on
the PC quickly on the Xbox, allowing for quick iteration times on content
presented as close to the final presentation as possible. For example, an artist
can update the textures on a model on the Xbox as s/he edits them on the PC;
for them, the average turnaround time to see a texture update is about 5
seconds.

Cache files: Optimized resources for the Xbox

One powerful aspect of our tag system is the complete separation between
resource runtime access and resource storage. Accessing tag data must be done
through the tag system; as such, the tag system can provide that data through
any arbitrary mechanism: caching the data in memory, generating it at runtime,
streaming it over the network, etc. As such, we can completely change the
underlying implementation of the tag system without affecting any other game
system that relies on the tag system. The fact that our editing build runs from
multiple single files is an implementation detail; it is not a necessary component
of the tag system itself.

Our single file based tag system is great for editing the game, but to run on
retail Xboxes we need to optimize the resource format so that it loads quickly
with a minimal amount of memory; loading from multiple single files would
clearly have a lot of runtime overhead, as well as rebuilding tags from scratch
every time we run a new level. Since all tags can be referenced globally by a
handle, once we load a level we have all the assets we needed to load it again.
And, because we have the tag_group layout for every loaded tag, we know
how to serialize each tag to a fixed runtime address without having to write
custom code. When we build the final resource file, which we call a cache file,
we simply dump all loaded tags into a giant buffer and write that out to a single
file. At runtime. we iust need to read that file into a fixed address before we

start the level; all other runtime systems behave the same. We do have a few
custom steps for stripping out and storing demand loaded data (namely textures
and sound), but the overall amount of work to implement the shipping resource
files is extremely straightforward.

Geometry cache (AKA, the "anything" cache)

For Halo 2, we decided to add geometry as a cacheable data type. This wasn't
nearly as easy to do compared to texture or sound data because we had two
different geometry formats, both of which were more complex than just a
chunk of data. In order to correctly page in this kind of data, we put the
geometry data into a tag_block and inspected its structure to serialize it similar
to how we serialize cache files. At runtime, we would inspect the tag_block
structure to restore the data properly. This kind of caching mechanism for
geometry allowed us to put much more variety of models and environments
into every level. It wasn't a perfect caching mechanism, as we did end up with
many levels that had too much data to put into memory at once. But in the end,
it gave us the flexibility to build much more detailed and diverse worlds
compared to Halo 1.

Incidentally, because the geometry cache operated on single-element
tag_blocks and not just geometry specific data, we were also able to cache our
lip-sync data for combat dialogue using the same system.

Tag dependency database

During the course of Halo 2's development, we found the need to analyze the
relationships between tags, e.g., locating dangling tag references, finding what
tags reference a given tag, etc. In order to analyze these relationships, we
loaded every tag and stored all its tag_references. After doing this for every tag,
we would then go back and create a graph with a link for each tag to the tags
that reference it.

This dependency database also gave us enough information to move entire tag
hierarchies around without breaking external references; given a set of tags and
the location to move them to, we could determine what tags needed to have
their references fixed up and move the tags safely without breaking
dependencies. We also used the same information to clone entire tag
hierarchies; this let us take existing content and replicate it into its own self-
contained hierarchy for further modification without affecting the pre-existing
content.

These are a few of the many powerful analysis tools available once you have a

~

type 1spection system that 1s programmatically accessible for your game
assets.

Problems with the tag system

Unfortunately, we ran into several problems with our tag system over the
lifetime of Halo's development.

Data coupling require more complex reload behavior

As we evolved existing systems, we had tags depend on data in their child tags
at runtime, e.g., a sound effect would depend on data in a
sound_effect_template tag; changing the child tag would have to trigger a
reload of the parent as well in order to maintain a valid runtime state. This was
easily solved by generating a mapping from child tags to parent tags; the hard
part was determining which child<->parent tag relationships to map. Mapping
the dependencies based solely on the tag_group layout wasn't an option for two
reasons: many tags did not have their runtime behavior defined from data in
child tags, or they had behavior defined by data in a child tag of a child tag.
Our solution was a bit more elegant: every time we postprocess a tag, we log
which tags are accessed via the global handle system, and store that as the
dependency. At tag reload time, we took the list of tags to reload, added the
tags that depended on them at runtime, and then reloaded them in the
appropriate order.

Unfortunately, the code-driven dependency database caused some strange
runtime behavior. Many tags were validated at runtime during the
postprocessing of a more global tag. In one particularly horrible case, the
shaders attached to our level geometry were validated at postprocess time for
level geometry. This had the unfortunate side effect of reloading the level
geometry when a bitmap attached to a shader attached to the level geometry
changed. Reloading level geometry takes a while because of how it globally
affects the game, so even simple bitmap changes could take a few minutes to
reload. In order to break these kinds of unnecessary dependencies, we had to
manually suppress the dependency mapping process in the postprocess
function as they were discovered. As you can expect, this manual process was
extremely brittle, and it caused a lot of frustration as the code evolved and
created new unexpected dependencies between tags.

More complex tags break Windows

Mnir haciec oame aceet editar Guierilla ie a nawerfull editino tanl that 11cec the

UL UMULV UL MUDVL WUILUL g SO UL 1D W U VY WAL WL WMALLLLLE LUVL WML UOVLD ua

tag_group layout to create a simple editing interface for tags. Guerilla iterates
over the tag_group fields and generates the editing interface by compositing
pre-defined dialogs together to create a form view. Unfortunately, creating
dialogs allocates space out of the Windows desktop heap. Since every GUI
application uses the desktop heap, exhausting it will cause problems with every
GUI application. As our tags became bigger and more complex, Guerilla
would often exhaust the desktop heap. This usually manifested in broken
behavior across all applications: error dialogs would not display, chat programs
wouldn't run correctly, 3d Studio Max would mysteriously eat input without
displaying the correct editing dialogs. Our solution, which is more accurately
described as a kludge, was to hide fields that only programmers needed to
view. This wasn't really a solution; it merely delayed Guerilla's ultimate
destruction of Windows.

Tag system destroys the Xbox file system

For our Xbox editing build to run with the new geometry cache system, we
had to dump the stripped geometry into a giant monolithic file. Our first pass at
this process had us strip the geometry and other cacheable data at load time on
the Xbox. At first, this solution worked pretty well. Cacheable data was
stripped at load time, resulting in a smaller memory footprint, and our editing
build only had to access a single file to page in cacheable data. However, this
resulted in an explosion of load times later on in the project as we added a ton
of sound assets. Sound assets by far dwarf every other kind of asset we have,
in terms of variety and sheer size. We spent more time writing out cacheable
sound data than we did reading in tags. To reduce load times, we moved the
cacheable data stripping into the xsync process. This increased xsync times a
lot, but it reduced Xbox load times enough to make it a net win in terms of
overall time wasted waiting to run the game. We did run into a few runtime
consistency problems, as the xsync process wasn't completely transactional.
You could occasionally have a tag loaded at runtime that failed to cache its data
properly at a later xsync time making the tag basically have no valid cacheable
data. However, this was due to space constraints on the Xbox and is something
that is easily solvable in the future.

Combat dialogue destroys the Windows file system

The combat dialogue data we had for Halo 2 was one of the most horrific data
sets we could have ever created for any game for three major reasons:

1. The order of magnitude increase in complexity with our combat dialog

system required an equal increase in quantity of combat dialogue sounds.

2. To ease our localization process, spoken dialog had multiple language

versions embedded in a single sound tag.

3. Raw sound data and tag data were interleaved throughout the sound tag.
These three factors caused the Windows file system to break when we added
combat dialogue for all the major characters. Running a level now required us
to read in a relatively small amount of data over thousands of files with a non-
predictable access pattern. This kind of interaction with the file system
managed to thrash the file system cache every time we loaded a level that had
characters with combat dialogue, which inconveniently happened to be every
single campaign level.

Thrashing the Windows file system cache is one of the most effective ways to
de-optimize any file system activity; any file system data that could be read
from memory now has to come from the disk, which is obviously an order of
magnitude slower. For us, that caused load times to increase from 15-20
seconds to 5-8 minutes for the more complex campaign levels, even on
machines with 2 GB of RAM.

To maintain reasonable load times on the PC, we resorted to shadowing the
combat dialogue directory from source control. Obviously, this wasn't the most
optimal solution, but short of writing our own PC side file system, it was the
best solution we could come up with.

Future considerations

As powerful as our tag system is, it is still cumbersome to setup new
tag_groups and tag_blocks. A programmer has to manually define a tag in
code, a process that is both extremely error prone with those unfamiliar with
the system and quite brittle as data formats change and evolve. A more
maintainable solution would be to separate the tag_group definition into a
separate file and build process; one major benefit of a separate system would be
to provide for a less brittle process for defining a tag_group and making sure
the layout is consistent with the compiler's struct layout.

Another area rife with possibilities would be to allow for arbitrary data stores to
serve as the backend of the tag system. As it stands right now, the tag storage
system is basically a database implemented on top of a file system. We can
easily abstract out the storage system so that we can load tags from anywhere; a
network share, a database that generates the tag on the fly, from a collection of
text files, or any other mechanism we come up with.

Conclusion

Our tag system was an integral part of our overall development process that
enabled us to effectively develop many different systems for Halo 1 and 2
while at the same time providing a resource management system that could be
targeted to widely varying runtime platforms without affecting other code. By
creating a cleanly separable persistence system that programmatically provides
type inspection, we were able to analyze and optimize our resources quickly
and easily with a minimum amount of effort and with very little modification of
the underlying system.

