
Halo

Chris Butcher

and 55 other people



Overview

 Ancestry

 Statistics

 Resource Model

 Runtime Data Architecture



Ancestry of the Halo Engine

 As old as Bungie (Pathways, 1992)

 Primarily written in C, some C++

 Platform-neutral foundations

PC / Console

 At heart, a world simulation engine



Vital Statistics: Code

 1.5MLOC in 3,624 files for 53MB of source

 Decent build times

Xbox Development build – 7:39

Xbox Shipping build (LTCG) – 10:06

Build farm (binaries) – 18 minutes

Build farm (complete game) – 53 minutes

 Shipping executable 4,861,952 bytes



Vital Statistics: Resources

 70GB in source control (Source Depot)

Not counting localization

 Level load: 4 minutes

 Level compile: 9 minutes

 Compiled level load: ~700ms

 Final shipping game: 4.2GB x8 SKUs



Vital Statistics: Development

 34 month development time (12/01-10/04)

engineers, 17

designers, 7

environment artists, 11

game artists, 8

technical artist, 1

animators, 6

producers, 3

sound designers, 3
administrative, 2

web / community, 8

test engineers, 5

test staff, 10

hourly testers, 20

localization testers, 14



Resource Model

 “Tag” File Organization

 Unified Tag Editor

 Loading / Post-Process

 Compiled Cache Files

 Memory Layout / Streaming



“Tag” Resources

 Name is a historical artefact (Myth, 1995)

 Singly-rooted hierarchical namespace
 Type: BIPED, Path: objects\characters\grunt\grunt

 Stored as individual files on host system
 c:\halo2\tags\objects\characters\grunt\grunt.biped

 99.99% of all data is a tag

Exceptions: loading screens, fonts



Tag Structure

 Hierarchy of variable-length „block‟ arrays

Each block contains 0-n fixed-size elements

Topmost block contains exactly 1 element

 Block elements are built from atomic fields

 Integer, Enum, Floating point, String, Text

Flags, Map function, Pixel shader

Child blocks, Binary data blobs

References to other tags



Tag Block Definition

 Blocks map directly to C structures

Described by separate macro definition

struct ai_properties

{

word flags;

short ai_size; 

string_id type_name; 

real leap_jump_speed;

};

TAG_BLOCK(ai_properties_block, 1, 

sizeof(struct ai_properties), NULL, NULL)

{

{_field_flags, "ai flags", &ai_properties_flags},

{_field_enum, "ai size", &ai_size_enum},

{_field_string_id, "ai type name"},

{_field_real, "leap jump speed"},

{_field_terminator}

};



Tag Block Definition

 Definition structure allows introspection

Automatic serialization of hierarchical tag

Byte-swapped upon load and save

Duplication, insertion, deletion of elements

Not needed at runtime (no RTTI)

 Simple file format

Requires exactly matching code and definition

Limited versioning support



Tag Data

 11.6GB, 39,000 tags

 To load a level:

 Load globals tag

 Load scenario tag

 Resolve dependencies

 Typically 8,000 tags

 130 types of tag

sound bitmap shader
render model object model collision model
effect animation graph physics model
other



Tag Editing (Guerilla)



Tag Editing

 Automatic editing UI from definition

Additional markup fields to format nicely

 Some fields hidden or read-only

Unless you use „expert mode‟

 Map editor is just custom UI on top of tags

 Command-line tools all manipulate tags



Source Data

 Anything not read by the game

Source assets: PSD, MAX

Tool-ready intermediate: TIFF, AIFF, ASS

 Command-line import tool
 c:\halo2\data\scenarios\solo\03a_oldmombasa\work\arcology2.max

 c:\halo2\data\scenarios\solo\03a_oldmombasa\structure\earthcity_3.ass

 c:\halo2\tags\scenarios\solo\03a_oldmombasa\earthcity_3.structure_bsp

 Produces one or more tags

Still platform-neutral until load time



Artist Workflow

 Import tools integrated into Guerilla GUI

 Monitoring mode for automatic import

Single-click export from Photoshop

 Import times in 5 second range

Except for level import, 10-30 minutes

Artists have release build of import tool



Tag Loading

 Deserialize tag blocks into memory

For “editing” or for “gameplay”

Bounds-check and sanitize all tag fields

 Custom postprocess operations

Read-only access to all dependent tags

Generation of platform-specific runtime data

Write out cacheable data as binary blobs



Loading is Slow!

 Thousands of files

Xbox path remap: xe:\halo2\tags\057\38

 Byte-by-byte processing

 Hundreds of thousands of mallocs

 Still manageable but not great

1-5 minutes on Xbox

1-3 minutes on PC or 20 sec with warm cache



Reload Anything

 Completely new copy of tag in memory

Game must never store pointers to tag data!

 Map or BSP reloads force level restart

 Everything else on the fly

Game receives callback after load

Must validate internal references to tag

Crash on reload == bug that must be fixed!



When to Reload

 PC applications use filesystem monitoring

Both game and map editor

 Manually initiate tag sync with Xbox

Scan hard drive of host system for changes

Copy any changed tags

Update path mapping file

Xbox client watches for new mapping file



The Payoff

 Seamless editing environment

Change any data, see it immediately (3-5 sec)

 Everyone in the engine all the time

75% of content authored on target system

Artists create directly for target environment

Unless it‟s working in the engine, it‟s not done

 After many iterations becomes transparent



Compiled Levels

 Development builds: 8,000 files

Pro: Flexible, incremental editing, fast reload

Con: Initial load, memory usage, disk space

 Profiling, testing, and ship builds: 1 file

Pro: Fast load, memory optimized

Con: Non-editable, compile time, disk space

Built locally or by build farm



Cache File Building

 Load level, perform final postprocessing

 Divide up and stream data into partitions

Global resource buffer

 Zone-specific resource buffer

 Cached data blocks

 Debug information

 180-270MB solo, 50-80MB multiplayer

 1GB working set, machine becomes unusable



Cache Sharing

 Duplication of data across levels

 Solution: Cache file dependencies

Blocks compared with dependent cache files

Write out reference to dependent file instead

 Custom shared scenarios for SP & MP

Not necessary to build a cache file

700MB -> 270MB ensures we fit on DVD-9



Cache Loading

 Copy from DVD to HDD and decompress

 Super fast load

Page in global and initial zone resources

Global: 6-8MB, Zone: 2-5MB, read in <<1sec

No iteration or fixup necessary

 Well... not strictly true due to Havok

 Warm caches before rendering frame 0



Memory Layout

 64MB physical memory on Xbox

13.9MB for static globals
 Kernel, Executable, Globals, Heap, Libraries

4MB world state

3MB networking (MP only)

Tag resource buffers: Global + MAX(Zones)
 Budget: 12MB or less

Everything else (36-40MB): dynamic caches



Cache Architecture

 Animation: 3MB solo, 4MB multiplayer
 8-19MB cacheable data, 2kb page size

 Sound: 3MB
 300-500MB cacheable data, 16kb page size

 Geometry: 6.5MB solo, 7MB MP or co-op
 20-45MB cacheable data, 4kb page size

 Texture: Everything else (17-21 MB)
Other systems temporarily steal from texture cache

 80-140MB cacheable data, 4kb page size



Runtime Data Storage

 Follows many principles of resource model

 Per-system memory compartments

Decouple and bound most failure cases

 Direct map from memory to savegame

Fast to load/save, good reproducibility

 Data Interoperability

Less ship-only bugs, ease of debugging



Datum Array

 Fixed-length array allocation

 Allocate only at first free index

Provides locality and allows data protection

 Fill upon allocate and deallocate

 Access elements through 32-bit identifier

16-bit index, 16-bit pseudounique „salt‟



Datum Access

 Known datum identifier (strong reference)

Asserts absolute index bounds, matching salt

Compiles to &array->data[identifier & 0xffff]

 Previous datum identifier (weak reference)

Salt must be valid but can differ

 Absolute index without salt

 Through iteration



Easy Catches

 Element access after delete/reallocate

 Uninitialized or bitwise corrupted identifiers

 Memory overruns

Through data protection, mismatch to known 

fill pattern, or salt overwrite

 Access outside safe time periods

Application launch, level load, zone switch



System Allocation Patterns

 Constant usage pattern

 Reserve memory at launch or level load

Code execution path defines ordering

 Basic memory types

Static globals at file scope (discouraged)

Heap allocations (startup only)

Physical memory map (dynamic per level)



All Allocations are Bounded

 Use datum arrays or pool based allocators

 Zero heap allocations at runtime! (Mostly.)

 Incurs overhead due to unused space

 Out-of-memory conditions are isolated

Easier to design for, easy to test in isolation

Provides general stability under load on 

multiple systems in unexpected situations



Big Exception: Havok

 Heap usage highly predictable...

 ... if results of simulation timestep are known

 Page allocator uses fixed memory reserve

Monitor usage after each timestep and GC

Tiered overflow pools for temporary excess

Must get rid of all excess each timestep

 Intra-step allocations could blow all pools



Runtime Usage Classes

 Categorized by lifetime and persistence

 Global application state

Render targets, system state, I/O, tags, cache

 Deterministic world “gamestate”

Players, objects, physics, scripting, AI, etc

 Non-deterministic “world view”

Rendering, sound, networking, input, UI, etc



Gamestate Memory

 Gamestate systems allocate at launch

Sequential allocation from 4MB buffer

Located at known addresses on PC and Xbox

 Fixed initialization order and size

Each gamestate memory chunk is always 

allocated at the same virtual address



Savegame format

 Write out gamestate buffer to file

Single write <<1sec, or can be asynchronous

 To load, read over in-memory gamestate

Apply some small fixups before and after load

Clear references to non-deterministic state

 Require compatibility between different 

builds (debug vs release)



Determinism

 Gamestate is deterministic with identical 

input from external sources (players)

Somewhat so between binaries and platforms

Some floating point issues

 Majority of Havok not in the gamestate

Many internal pointers and static storage

Recreate all Havok from gamestate upon load



Consequences

 No #ifdef DEBUG in game data structures

 No dependencies on world view

 Including game-affecting LOD (e.g. animation)

 No dependencies on file I/O

Cannot affect game based on caching!

 No dependence on framerate or perf times

 Many of these are good properties anyway



Summary

 Lots of simple choices

 Implications on engine and data design 

are interesting

 Questions?

Now, or mailto: butcher@bungie.com


