
Halo

Chris Butcher

and 55 other people



Overview

 Ancestry

 Statistics

 Resource Model

 Runtime Data Architecture



Ancestry of the Halo Engine

 As old as Bungie (Pathways, 1992)

 Primarily written in C, some C++

 Platform-neutral foundations

PC / Console

 At heart, a world simulation engine



Vital Statistics: Code

 1.5MLOC in 3,624 files for 53MB of source

 Decent build times

Xbox Development build – 7:39

Xbox Shipping build (LTCG) – 10:06

Build farm (binaries) – 18 minutes

Build farm (complete game) – 53 minutes

 Shipping executable 4,861,952 bytes



Vital Statistics: Resources

 70GB in source control (Source Depot)

Not counting localization

 Level load: 4 minutes

 Level compile: 9 minutes

 Compiled level load: ~700ms

 Final shipping game: 4.2GB x8 SKUs



Vital Statistics: Development

 34 month development time (12/01-10/04)

engineers, 17

designers, 7

environment artists, 11

game artists, 8

technical artist, 1

animators, 6

producers, 3

sound designers, 3
administrative, 2

web / community, 8

test engineers, 5

test staff, 10

hourly testers, 20

localization testers, 14



Resource Model

 “Tag” File Organization

 Unified Tag Editor

 Loading / Post-Process

 Compiled Cache Files

 Memory Layout / Streaming



“Tag” Resources

 Name is a historical artefact (Myth, 1995)

 Singly-rooted hierarchical namespace
 Type: BIPED, Path: objects\characters\grunt\grunt

 Stored as individual files on host system
 c:\halo2\tags\objects\characters\grunt\grunt.biped

 99.99% of all data is a tag

Exceptions: loading screens, fonts



Tag Structure

 Hierarchy of variable-length „block‟ arrays

Each block contains 0-n fixed-size elements

Topmost block contains exactly 1 element

 Block elements are built from atomic fields

 Integer, Enum, Floating point, String, Text

Flags, Map function, Pixel shader

Child blocks, Binary data blobs

References to other tags



Tag Block Definition

 Blocks map directly to C structures

Described by separate macro definition

struct ai_properties

{

word flags;

short ai_size; 

string_id type_name; 

real leap_jump_speed;

};

TAG_BLOCK(ai_properties_block, 1, 

sizeof(struct ai_properties), NULL, NULL)

{

{_field_flags, "ai flags", &ai_properties_flags},

{_field_enum, "ai size", &ai_size_enum},

{_field_string_id, "ai type name"},

{_field_real, "leap jump speed"},

{_field_terminator}

};



Tag Block Definition

 Definition structure allows introspection

Automatic serialization of hierarchical tag

Byte-swapped upon load and save

Duplication, insertion, deletion of elements

Not needed at runtime (no RTTI)

 Simple file format

Requires exactly matching code and definition

Limited versioning support



Tag Data

 11.6GB, 39,000 tags

 To load a level:

 Load globals tag

 Load scenario tag

 Resolve dependencies

 Typically 8,000 tags

 130 types of tag

sound bitmap shader
render model object model collision model
effect animation graph physics model
other



Tag Editing (Guerilla)



Tag Editing

 Automatic editing UI from definition

Additional markup fields to format nicely

 Some fields hidden or read-only

Unless you use „expert mode‟

 Map editor is just custom UI on top of tags

 Command-line tools all manipulate tags



Source Data

 Anything not read by the game

Source assets: PSD, MAX

Tool-ready intermediate: TIFF, AIFF, ASS

 Command-line import tool
 c:\halo2\data\scenarios\solo\03a_oldmombasa\work\arcology2.max

 c:\halo2\data\scenarios\solo\03a_oldmombasa\structure\earthcity_3.ass

 c:\halo2\tags\scenarios\solo\03a_oldmombasa\earthcity_3.structure_bsp

 Produces one or more tags

Still platform-neutral until load time



Artist Workflow

 Import tools integrated into Guerilla GUI

 Monitoring mode for automatic import

Single-click export from Photoshop

 Import times in 5 second range

Except for level import, 10-30 minutes

Artists have release build of import tool



Tag Loading

 Deserialize tag blocks into memory

For “editing” or for “gameplay”

Bounds-check and sanitize all tag fields

 Custom postprocess operations

Read-only access to all dependent tags

Generation of platform-specific runtime data

Write out cacheable data as binary blobs



Loading is Slow!

 Thousands of files

Xbox path remap: xe:\halo2\tags\057\38

 Byte-by-byte processing

 Hundreds of thousands of mallocs

 Still manageable but not great

1-5 minutes on Xbox

1-3 minutes on PC or 20 sec with warm cache



Reload Anything

 Completely new copy of tag in memory

Game must never store pointers to tag data!

 Map or BSP reloads force level restart

 Everything else on the fly

Game receives callback after load

Must validate internal references to tag

Crash on reload == bug that must be fixed!



When to Reload

 PC applications use filesystem monitoring

Both game and map editor

 Manually initiate tag sync with Xbox

Scan hard drive of host system for changes

Copy any changed tags

Update path mapping file

Xbox client watches for new mapping file



The Payoff

 Seamless editing environment

Change any data, see it immediately (3-5 sec)

 Everyone in the engine all the time

75% of content authored on target system

Artists create directly for target environment

Unless it‟s working in the engine, it‟s not done

 After many iterations becomes transparent



Compiled Levels

 Development builds: 8,000 files

Pro: Flexible, incremental editing, fast reload

Con: Initial load, memory usage, disk space

 Profiling, testing, and ship builds: 1 file

Pro: Fast load, memory optimized

Con: Non-editable, compile time, disk space

Built locally or by build farm



Cache File Building

 Load level, perform final postprocessing

 Divide up and stream data into partitions

Global resource buffer

 Zone-specific resource buffer

 Cached data blocks

 Debug information

 180-270MB solo, 50-80MB multiplayer

 1GB working set, machine becomes unusable



Cache Sharing

 Duplication of data across levels

 Solution: Cache file dependencies

Blocks compared with dependent cache files

Write out reference to dependent file instead

 Custom shared scenarios for SP & MP

Not necessary to build a cache file

700MB -> 270MB ensures we fit on DVD-9



Cache Loading

 Copy from DVD to HDD and decompress

 Super fast load

Page in global and initial zone resources

Global: 6-8MB, Zone: 2-5MB, read in <<1sec

No iteration or fixup necessary

 Well... not strictly true due to Havok

 Warm caches before rendering frame 0



Memory Layout

 64MB physical memory on Xbox

13.9MB for static globals
 Kernel, Executable, Globals, Heap, Libraries

4MB world state

3MB networking (MP only)

Tag resource buffers: Global + MAX(Zones)
 Budget: 12MB or less

Everything else (36-40MB): dynamic caches



Cache Architecture

 Animation: 3MB solo, 4MB multiplayer
 8-19MB cacheable data, 2kb page size

 Sound: 3MB
 300-500MB cacheable data, 16kb page size

 Geometry: 6.5MB solo, 7MB MP or co-op
 20-45MB cacheable data, 4kb page size

 Texture: Everything else (17-21 MB)
Other systems temporarily steal from texture cache

 80-140MB cacheable data, 4kb page size



Runtime Data Storage

 Follows many principles of resource model

 Per-system memory compartments

Decouple and bound most failure cases

 Direct map from memory to savegame

Fast to load/save, good reproducibility

 Data Interoperability

Less ship-only bugs, ease of debugging



Datum Array

 Fixed-length array allocation

 Allocate only at first free index

Provides locality and allows data protection

 Fill upon allocate and deallocate

 Access elements through 32-bit identifier

16-bit index, 16-bit pseudounique „salt‟



Datum Access

 Known datum identifier (strong reference)

Asserts absolute index bounds, matching salt

Compiles to &array->data[identifier & 0xffff]

 Previous datum identifier (weak reference)

Salt must be valid but can differ

 Absolute index without salt

 Through iteration



Easy Catches

 Element access after delete/reallocate

 Uninitialized or bitwise corrupted identifiers

 Memory overruns

Through data protection, mismatch to known 

fill pattern, or salt overwrite

 Access outside safe time periods

Application launch, level load, zone switch



System Allocation Patterns

 Constant usage pattern

 Reserve memory at launch or level load

Code execution path defines ordering

 Basic memory types

Static globals at file scope (discouraged)

Heap allocations (startup only)

Physical memory map (dynamic per level)



All Allocations are Bounded

 Use datum arrays or pool based allocators

 Zero heap allocations at runtime! (Mostly.)

 Incurs overhead due to unused space

 Out-of-memory conditions are isolated

Easier to design for, easy to test in isolation

Provides general stability under load on 

multiple systems in unexpected situations



Big Exception: Havok

 Heap usage highly predictable...

 ... if results of simulation timestep are known

 Page allocator uses fixed memory reserve

Monitor usage after each timestep and GC

Tiered overflow pools for temporary excess

Must get rid of all excess each timestep

 Intra-step allocations could blow all pools



Runtime Usage Classes

 Categorized by lifetime and persistence

 Global application state

Render targets, system state, I/O, tags, cache

 Deterministic world “gamestate”

Players, objects, physics, scripting, AI, etc

 Non-deterministic “world view”

Rendering, sound, networking, input, UI, etc



Gamestate Memory

 Gamestate systems allocate at launch

Sequential allocation from 4MB buffer

Located at known addresses on PC and Xbox

 Fixed initialization order and size

Each gamestate memory chunk is always 

allocated at the same virtual address



Savegame format

 Write out gamestate buffer to file

Single write <<1sec, or can be asynchronous

 To load, read over in-memory gamestate

Apply some small fixups before and after load

Clear references to non-deterministic state

 Require compatibility between different 

builds (debug vs release)



Determinism

 Gamestate is deterministic with identical 

input from external sources (players)

Somewhat so between binaries and platforms

Some floating point issues

 Majority of Havok not in the gamestate

Many internal pointers and static storage

Recreate all Havok from gamestate upon load



Consequences

 No #ifdef DEBUG in game data structures

 No dependencies on world view

 Including game-affecting LOD (e.g. animation)

 No dependencies on file I/O

Cannot affect game based on caching!

 No dependence on framerate or perf times

 Many of these are good properties anyway



Summary

 Lots of simple choices

 Implications on engine and data design 

are interesting

 Questions?

Now, or mailto: butcher@bungie.com


