Halo

Chris Butcher
and 55 other people



Overview

m Ancestry

m Statistics

m Resource Model

m Runtime Data Architecture



" J
Ancestry of the Halo Engine

m As old as Bungie (Pathways, 1992)
m Primarily written in C, some C++

m Platform-neutral foundations
PC / Console

m At heart, a world simulation engine
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Vital Statistics: Code

m 1.5MLOC In 3,624 files for 53MB of source

m Decent build times
Xbox Development build — 7:39
Xbox Shipping build (LTCG) — 10:06
Build farm (binaries) — 18 minutes
Build farm (complete game) — 53 minutes

m Shipping executable 4,861,952 bytes
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Vital Statistics: Resources

m /0GB In source control (Source Depot)
Not counting localization

m Level load: 4 minutes

m Level compile: 9 minutes

m Compiled level load: ~700ms

m Final shipping game: 4.2GB x8 SKUs
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Vital Statistics: Development

m 34 month development time (12/01-10/04)

sound designers, 3

administrative, 2

producers, 3

o web / community, 8
localization testers, 14

. engineers, 17
animators, 6 g

technical artist, 1 test engineers, 5

game artists, 8

test staff, 10
designers, 7

hourly testers, 20
environment artists, 11



Resource Model

m “Tag” File Organization

m Unified Tag Editor

m Loading / Post-Process

m Compiled Cache Files

m Memory Layout / Streaming




“Tag” Resources

m Name Is a historical artefact (Myth, 1995)
m Singly-rooted hierarchical namespace

Type: BIPED, Path: objects\characters\grunt\grunt

m Stored as individual files on host system

c:\halo2\tags\objects\characters\grunt\grunt.biped

m 99.99% of all data Is a tag
Exceptions: loading screens, fonts
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Tag Structure

m Hierarchy of variable-length ‘block’ arrays
Each block contains 0-n fixed-size elements
Topmost block contains exactly 1 element

m Block elements are built from atomic fields
Integer, Enum, Floating point, String, Text
Flags, Map function, Pixel shader
Child blocks, Binary data blobs
References to other tags



Tag Block Definition

m Blocks map directly to C structures
Described by separate macro definition

struct ai_properties TAG_BLOCK(ai_properties_block, 1,

{ sizeof(struct ai_properties), NULL, NULL)
word flags; {
short ai_size; { field flags, "ai flags", &ai_properties_flags},

{ field_enum, "ai size", &ai_size_enum},
string_id type _name;
real leap_jump_speed:; { field_string_id, "ai type name"},
% { field real, "leap jump speed"},
{ field_terminator}
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Tag Block Definition

m Definition structure allows introspection
Automatic serialization of hierarchical tag
Byte-swapped upon load and save
Duplication, insertion, deletion of elements
Not needed at runtime (no RTTI)

m Simple file format

Requires exactly matching code and definition
Limited versioning support
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Tag Data

m 11.6GB, 39,000 tags

m Toload a level:
"1 Load globals tag
1 Load scenario tag
1 Resolve dependencies
1 Typically 8,000 tags

m 130 types of tag

O sound B bitmap O shader
O render model B object model @ collision model
B effect O animation graph M physics model




Tag Editing (Guerilla)
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Tag Editing

m Automatic editing Ul from definition
Additional markup fields to format nicely

m Some fields hidden or read-only
Unless you use ‘expert mode’

m Map editor Is just custom Ul on top of tags
m Command-line tools all manipulate tags
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Source Data

m Anything not read by the game
Source assets: PSD, MAX
Tool-ready intermediate: TIFF, AIFF, ASS

m Command-line import tool

c:\halo2\data\scenarios\solo\03a_oldmombasa\work\arcology2.max
c:\halo2\data\scenarios\solo\03a_oldmombasa\structure\earthcity 3.ass
c:\halo2\tags\scenarios\solo\03a_oldmombasa\earthcity 3.structure bsp

m Produces one or more tags
Still platform-neutral until load time
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Artist Workflow

m I[mport tools integrated into Guerilla GUI
m Monitoring mode for automatic import
Single-click export from Photoshop

m I[mport times In 5 second range

Except for level import, 10-30 minutes
Artists have release build of import tool
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Tag Loading

m Deserialize tag blocks into memory
For “editing” or for “gameplay”
Bounds-check and sanitize all tag fields

m Custom postprocess operations
Read-only access to all dependent tags

Generation of platform-specific runtime data
Write out cacheable data as binary blobs



Loading Is Slow!

m Thousands of files
Xbox path remap: xe:\halo2\tags\057\38

m Byte-by-byte processing
m Hundreds of thousands of mallocs

m Still manageable but not great

1-5 minutes on Xbox
1-3 minutes on PC or 20 sec with warm cache




Reload Anything

m Completely new copy of tag In memory
Game must never store pointers to tag data!

m Map or BSP reloads force level restart

m Everything else on the fly
Game receives callback after load
Must validate internal references to tag
Crash on reload == bug that must be fixed!



When to Reload

m PC applications use filesystem monitoring
Both game and map editor

m Manually Initiate tag sync with Xbox
Scan hard drive of host system for changes
Copy any changed tags
Update path mapping file
Xbox client watches for new mapping file



" S
The Payoff

m Seamless editing environment

Change any data, see it immediately (3-5 sec)
m Everyone in the engine all the time

/5% of content authored on target system

Artists create directly for target environment
Unless it's working in the engine, it's not done

m After many iterations becomes transparent



Compiled Levels

m Development builds: 8,000 files

Pro: Flexible, incremental
Con: Initial load, memory
m Profiling, testing, and shi
Pro: Fast load, memory o
Con: Non-editable, compi

editing, fast reload
usage, disk space
0 builds: 1 file
ptimized

e time, disk space

Built locally or by build farm
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Cache File Building

m Load level, perform final postprocessing

m Divide up and stream data into partitions
Global resource buffer
Zone-specific resource buffer
Cached data blocks
Debug information

m 180-270MB solo, 50-80MB multiplayer
m 1GB working set, machine becomes unusable



Cache Sharing

m Duplication of data across levels

m Solution: Cache file dependencies
Blocks compared with dependent cache files
Write out reference to dependent file instead
m Custom shared scenarios for SP & MP

Not necessary to build a cache file
/00MB -> 270MB ensures we fit on DVD-9
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Cache Loading

m Copy from DVD to HDD and decompress
m Super fast load

Page in global and initial zone resources
Global: 6-8MB, Zone: 2-5MB, read in <<lsec
No iteration or fixup necessary

= Well... not strictly true due to Havok

m \Warm caches before rendering frame O
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Memory Layout

m 64MB physical memory on Xbox

13.9MB for static globals
m Kernel, Executable, Globals, Heap, Libraries
4MB world state

3MB networking (MP only)

Tag resource buffers: Global + MAX(Zones)
= Budget: 12MB or less

Everything else (36-40MB): dynamic caches
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Cache Architecture

= Animation: 3MB solo, 4MB multiplayer
8-19MB cacheable data, 2kb page size

m Sound: 3MB
300-500MB cacheable data, 16kb page size

m Geometry: 6.5MB solo, 7MB MP or co-op
20-45MB cacheable data, 4kb page size

m Texture: Everything else (17-21 MB)

Other systems temporarily steal from texture cache
80-140MB cacheable data, 4kb page size



Runtime Data Storage

m Follows many principles of resource model

m Per-system memory compartments
Decouple and bound most failure cases

m Direct map from memory to savegame
Fast to load/save, good reproducibility

m Data Interoperability
Less ship-only bugs, ease of debugging



Datum Array

m Fixed-length array allocation

m Allocate only at first free index
Provides locality and allows data protection

m Fill upon allocate and deallocate

m Access elements through 32-bit identifier
16-bit index, 16-bit pseudounique ‘salt’



Datum Access

m Known datum identifier (strong reference)
Asserts absolute index bounds, matching salt
Compiles to &array->datalidentifier & Oxffff]

m Previous datum identifier (weak reference)
Salt must be valid but can differ

m Absolute index without salt
m Through iteration



Easy Catches

m Element access after delete/reallocate
m Uninitialized or bitwise corrupted identifiers

= Memory overruns

Through data protection, mismatch to known
fill pattern, or salt overwrite

m Access outside safe time periods
Application launch, level load, zone switch
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System Allocation Patterns

m Constant usage pattern

m Reserve memory at launch or level load
Code execution path defines ordering
m Basic memory types

Static globals at file scope (discouraged)
Heap allocations (startup only)
Physical memory map (dynamic per level)
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All Allocations are Bounded

m Use datum arrays or pool based allocators
m Zero heap allocations at runtime! s,
m Incurs overhead due to unused space

m Out-of-memory conditions are isolated

Easier to design for, easy to test in isolation

Provides general stability under load on
multiple systems in unexpected situations



" S
Big Exception: Havok

m Heap usage highly predictable...
... If results of simulation timestep are known
m Page allocator uses fixed memory reserve
Monitor usage after each timestep and GC

Tiered overflow pools for temporary excess
Must get rid of all excess each timestep

m Intra-step allocations could blow all pools



Runtime Usage Classes

m Categorized by lifetime and persistence

m Global application state
Render targets, system state, 1/O, tags, cache

m Deterministic world “"gamestate”

Players, objects, physics, scripting, Al, etc
m Non-deterministic “world view”

Rendering, sound, networking, input, Ul, etc



Gamestate Memory

m Gamestate systems allocate at launch
Sequential allocation from 4MB buffer
Located at known addresses on PC and Xbox

m Fixed initialization order and size

Each gamestate memory chunk is always
allocated at the same virtual address



Savegame format

m \Write out gamestate buffer to file
Single write <<l1sec, or can be asynchronous

m To load, read over in-memory gamestate
Apply some small fixups before and after load
Clear references to non-deterministic state

m Require compatibility between different
builds (debug vs release)



Determinism

m Gamestate Is deterministic with identical
Input from external sources (players)

Somewhat so between binaries and platforms
Some floating point issues
m Majority of Havok not in the gamestate

Many internal pointers and static storage
Recreate all Havok from gamestate upon load
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Consequences

m No #ifdef DEBUG In game data structures

m No dependencies on world view
Including game-affecting LOD (e.g. animation)

m No dependencies on file I/O
Cannot affect game based on caching!

m No dependence on framerate or perf times
m Many of these are good properties anyway
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Summary

m Lots of simple choices

m Implications on engine and data design
are interesting

m Questions?
Now, or mailto: butcher@bungie.com



