Halo

Chris Butcher
and 55 other people

Overview

m Ancestry

m Statistics

m Resource Model

m Runtime Data Architecture

" J
Ancestry of the Halo Engine

m As old as Bungie (Pathways, 1992)
m Primarily written in C, some C++

m Platform-neutral foundations
PC / Console

m At heart, a world simulation engine

" A
Vital Statistics: Code

m 1.5MLOC In 3,624 files for 53MB of source

m Decent build times
Xbox Development build — 7:39
Xbox Shipping build (LTCG) — 10:06
Build farm (binaries) — 18 minutes
Build farm (complete game) — 53 minutes

m Shipping executable 4,861,952 bytes

" A
Vital Statistics: Resources

m /0GB In source control (Source Depot)
Not counting localization

m Level load: 4 minutes

m Level compile: 9 minutes

m Compiled level load: ~700ms

m Final shipping game: 4.2GB x8 SKUs

" J
Vital Statistics: Development

m 34 month development time (12/01-10/04)

sound designers, 3

administrative, 2

producers, 3

o web / community, 8
localization testers, 14

. engineers, 17
animators, 6 g

technical artist, 1 test engineers, 5

game artists, 8

test staff, 10
designers, 7

hourly testers, 20
environment artists, 11

Resource Model

m “Tag” File Organization

m Unified Tag Editor

m Loading / Post-Process

m Compiled Cache Files

m Memory Layout / Streaming

“Tag” Resources

m Name Is a historical artefact (Myth, 1995)
m Singly-rooted hierarchical namespace

Type: BIPED, Path: objects\characters\grunt\grunt

m Stored as individual files on host system

c:\halo2\tags\objects\characters\grunt\grunt.biped

m 99.99% of all data Is a tag
Exceptions: loading screens, fonts

" J
Tag Structure

m Hierarchy of variable-length ‘block’ arrays
Each block contains 0-n fixed-size elements
Topmost block contains exactly 1 element

m Block elements are built from atomic fields
Integer, Enum, Floating point, String, Text
Flags, Map function, Pixel shader
Child blocks, Binary data blobs
References to other tags

Tag Block Definition

m Blocks map directly to C structures
Described by separate macro definition

struct ai_properties TAG_BLOCK(ai_properties_block, 1,

{ sizeof(struct ai_properties), NULL, NULL)
word flags; {
short ai_size; { field flags, "ai flags", &ai_properties_flags},

{ field_enum, "ai size", &ai_size_enum},
string_id type _name;
real leap_jump_speed:; { field_string_id, "ai type name"},
% { field real, "leap jump speed"},
{ field_terminator}

" S
Tag Block Definition

m Definition structure allows introspection
Automatic serialization of hierarchical tag
Byte-swapped upon load and save
Duplication, insertion, deletion of elements
Not needed at runtime (no RTTI)

m Simple file format

Requires exactly matching code and definition
Limited versioning support

" N
Tag Data

m 11.6GB, 39,000 tags

m Toload a level:
"1 Load globals tag
1 Load scenario tag
1 Resolve dependencies
1 Typically 8,000 tags

m 130 types of tag

O sound B bitmap O shader
O render model B object model @ collision model
B effect O animation graph M physics model

Tag Editing (Guerilla)

:l Fila

Edit Wiew

wWindow Help Source Control

Set active file filter

[Mo fiter

Bixl

=53 tags

ai

camera.
cinematics
effects
globals
ncompetant
multiplasyer
=& nbjects

o (E8 bitrmaps

] [[[

E:
E:
E
E
E
E
E

=188 characters

ambient_life

brute

bugger

bugger_tank
cinematic_camera
cortana

dervish

elite

| elite_ranger

B8 flood_infection
flood_juggernaut
floodcarrier
floodcombat_elite
floodcombat_human
gravemind

8 grunt

04_intral

04_intro

05_intro

07 _intro

ai

animations
bitmaps
damage_effects
grunt_heretic
grunt_scenery
shaders

w02
grunt.collision_model
gruntmodel
gruntmodel_animation_graph
gruntphysics_mode!
gruntrender_model
grunt.scenery

Ve b e b e e e e e e -
- G- - - - - - - B - B - - - T

flags

bounding radius

bounding offset
acceleration scale
lightmap shadow mode
sweetener size

chynamic light sphere radius
dynamic light sphere oftzet
default model variant
model

crate object

maodifier shader

creation effect

rmaterial effects

ai flags

ai twpe name
alsize

leap jump speed

Cddoes not cast shadow

[Csearch cardinal direction lightmagps
Cunused

ot & pathfinding olbstacle
Cextension of parent

Ccloes not cause collision damage
Cearly mover

Cearly mover localized physics
[use static massive lightmap sample
Cobject scales attachments
Cinherits player's appearance
[Cclead hipeds can't localize

[Cattach to clusters by dynamic sphere
effects created by this object do not

IU.4 world units

x[015 v [0 o

[T=E [0, +inf]

I default

Imedlum

—

xIU yID 2|0

ImmDrﬁCrZ

Iobjects\ch aractershgruntigrunt.model

Ieﬂe cts\materialshobjects. Agruntmaterial_effect

Cdetroyakble cower
[Cpathfinding ignore when dead
Cchenarmic cower

ANATT

L L]

Open | Import | Clear |
open || Impor | clear |
open || import | ciear |
Open || Import | clear |
open | Import | clear |

Imedlum

[rorE

" S
Tag Editing

m Automatic editing Ul from definition
Additional markup fields to format nicely

m Some fields hidden or read-only
Unless you use ‘expert mode’

m Map editor Is just custom Ul on top of tags
m Command-line tools all manipulate tags

" A
Source Data

m Anything not read by the game
Source assets: PSD, MAX
Tool-ready intermediate: TIFF, AIFF, ASS

m Command-line import tool

c:\halo2\data\scenarios\solo\03a_oldmombasa\work\arcology2.max
c:\halo2\data\scenarios\solo\03a_oldmombasa\structure\earthcity 3.ass
c:\halo2\tags\scenarios\solo\03a_oldmombasa\earthcity 3.structure bsp

m Produces one or more tags
Still platform-neutral until load time

" I
Artist Workflow

m I[mport tools integrated into Guerilla GUI
m Monitoring mode for automatic import
Single-click export from Photoshop

m I[mport times In 5 second range

Except for level import, 10-30 minutes
Artists have release build of import tool

"
Tag Loading

m Deserialize tag blocks into memory
For “editing” or for “gameplay”
Bounds-check and sanitize all tag fields

m Custom postprocess operations
Read-only access to all dependent tags

Generation of platform-specific runtime data
Write out cacheable data as binary blobs

Loading Is Slow!

m Thousands of files
Xbox path remap: xe:\halo2\tags\057\38

m Byte-by-byte processing
m Hundreds of thousands of mallocs

m Still manageable but not great

1-5 minutes on Xbox
1-3 minutes on PC or 20 sec with warm cache

Reload Anything

m Completely new copy of tag In memory
Game must never store pointers to tag data!

m Map or BSP reloads force level restart

m Everything else on the fly
Game receives callback after load
Must validate internal references to tag
Crash on reload == bug that must be fixed!

When to Reload

m PC applications use filesystem monitoring
Both game and map editor

m Manually Initiate tag sync with Xbox
Scan hard drive of host system for changes
Copy any changed tags
Update path mapping file
Xbox client watches for new mapping file

" S
The Payoff

m Seamless editing environment

Change any data, see it immediately (3-5 sec)
m Everyone in the engine all the time

/5% of content authored on target system

Artists create directly for target environment
Unless it's working in the engine, it's not done

m After many iterations becomes transparent

Compiled Levels

m Development builds: 8,000 files

Pro: Flexible, incremental
Con: Initial load, memory
m Profiling, testing, and shi
Pro: Fast load, memory o
Con: Non-editable, compi

editing, fast reload
usage, disk space
0 builds: 1 file
ptimized

e time, disk space

Built locally or by build farm

" J
Cache File Building

m Load level, perform final postprocessing

m Divide up and stream data into partitions
Global resource buffer
Zone-specific resource buffer
Cached data blocks
Debug information

m 180-270MB solo, 50-80MB multiplayer
m 1GB working set, machine becomes unusable

Cache Sharing

m Duplication of data across levels

m Solution: Cache file dependencies
Blocks compared with dependent cache files
Write out reference to dependent file instead
m Custom shared scenarios for SP & MP

Not necessary to build a cache file
/00MB -> 270MB ensures we fit on DVD-9

"
Cache Loading

m Copy from DVD to HDD and decompress
m Super fast load

Page in global and initial zone resources
Global: 6-8MB, Zone: 2-5MB, read in <<lsec
No iteration or fixup necessary

= Well... not strictly true due to Havok

m \Warm caches before rendering frame O

" A
Memory Layout

m 64MB physical memory on Xbox

13.9MB for static globals
m Kernel, Executable, Globals, Heap, Libraries
4MB world state

3MB networking (MP only)

Tag resource buffers: Global + MAX(Zones)
= Budget: 12MB or less

Everything else (36-40MB): dynamic caches

" A
Cache Architecture

= Animation: 3MB solo, 4MB multiplayer
8-19MB cacheable data, 2kb page size

m Sound: 3MB
300-500MB cacheable data, 16kb page size

m Geometry: 6.5MB solo, 7MB MP or co-op
20-45MB cacheable data, 4kb page size

m Texture: Everything else (17-21 MB)

Other systems temporarily steal from texture cache
80-140MB cacheable data, 4kb page size

Runtime Data Storage

m Follows many principles of resource model

m Per-system memory compartments
Decouple and bound most failure cases

m Direct map from memory to savegame
Fast to load/save, good reproducibility

m Data Interoperability
Less ship-only bugs, ease of debugging

Datum Array

m Fixed-length array allocation

m Allocate only at first free index
Provides locality and allows data protection

m Fill upon allocate and deallocate

m Access elements through 32-bit identifier
16-bit index, 16-bit pseudounique ‘salt’

Datum Access

m Known datum identifier (strong reference)
Asserts absolute index bounds, matching salt
Compiles to &array->datalidentifier & Oxffff]

m Previous datum identifier (weak reference)
Salt must be valid but can differ

m Absolute index without salt
m Through iteration

Easy Catches

m Element access after delete/reallocate
m Uninitialized or bitwise corrupted identifiers

= Memory overruns

Through data protection, mismatch to known
fill pattern, or salt overwrite

m Access outside safe time periods
Application launch, level load, zone switch

" J
System Allocation Patterns

m Constant usage pattern

m Reserve memory at launch or level load
Code execution path defines ordering
m Basic memory types

Static globals at file scope (discouraged)
Heap allocations (startup only)
Physical memory map (dynamic per level)

" A
All Allocations are Bounded

m Use datum arrays or pool based allocators
m Zero heap allocations at runtime! s,
m Incurs overhead due to unused space

m Out-of-memory conditions are isolated

Easier to design for, easy to test in isolation

Provides general stability under load on
multiple systems in unexpected situations

" S
Big Exception: Havok

m Heap usage highly predictable...
... If results of simulation timestep are known
m Page allocator uses fixed memory reserve
Monitor usage after each timestep and GC

Tiered overflow pools for temporary excess
Must get rid of all excess each timestep

m Intra-step allocations could blow all pools

Runtime Usage Classes

m Categorized by lifetime and persistence

m Global application state
Render targets, system state, 1/O, tags, cache

m Deterministic world “"gamestate”

Players, objects, physics, scripting, Al, etc
m Non-deterministic “world view”

Rendering, sound, networking, input, Ul, etc

Gamestate Memory

m Gamestate systems allocate at launch
Sequential allocation from 4MB buffer
Located at known addresses on PC and Xbox

m Fixed initialization order and size

Each gamestate memory chunk is always
allocated at the same virtual address

Savegame format

m \Write out gamestate buffer to file
Single write <<l1sec, or can be asynchronous

m To load, read over in-memory gamestate
Apply some small fixups before and after load
Clear references to non-deterministic state

m Require compatibility between different
builds (debug vs release)

Determinism

m Gamestate Is deterministic with identical
Input from external sources (players)

Somewhat so between binaries and platforms
Some floating point issues
m Majority of Havok not in the gamestate

Many internal pointers and static storage
Recreate all Havok from gamestate upon load

" J
Consequences

m No #ifdef DEBUG In game data structures

m No dependencies on world view
Including game-affecting LOD (e.g. animation)

m No dependencies on file I/O
Cannot affect game based on caching!

m No dependence on framerate or perf times
m Many of these are good properties anyway

" S
Summary

m Lots of simple choices

m Implications on engine and data design
are interesting

m Questions?
Now, or mailto: butcher@bungie.com

