
The Art and Technology Behind
Bioshock’s Special Effects

Presented by
Stephen Alexander (Effects Artist)

Jesse Johnson (Graphics Programmer)

Presentation Overview

• Iterative Workflow Between Art and Tech
• Lit Particles
• Bioshock’s Water: An Artist’s Perspective
• Technology Behind Interactive Waterfalls
• Water Caustics
• Interactive Rippling Water System
• Optimization Case Study: Bioshock’s Fire

Art and Tech Iterative Workflow

The FX Closet

Why Lit Particles?

• High contrast lighting environments
• Numerous atmospheric effects

Technical Challenges With Lit Particles

• Must be rendered in a single pass
• Need to satisfy very high performance

requirements
• Potential for shader permutation issues

Lit Particles: Iteration 1

• Light attenuation done per vertex
• Static branching used to accumulate

multiple lights in vertex shader
• Attenuated color interpolated via single

float3
• Per vertex approximation typically good for

highly tessellated geometry

Lit Particles: Iteration 2

• Problems with iteration 1:
– Particles too dark in total darkness
– Particles too bight in bright environments

• Solutions
– Used maximum of new ambient term, vertex

lighting
• Not ambient + lighting

– Scale RGB down if any component over 1.0
• newRGB = oldRGB / (1.0 + max(0.0, maxRGBChannelValue

-1.0));

Lit Particles: Iteration 2

• Problems with iteration 1:
– Particles too dark in total darkness
– Particles too bight in bright environments

• Solutions
– Used maximum of new ambient term, vertex

lighting
• Not ambient + lighting

– Scale RGB down if any component over 1.0
• newRGB = oldRGB / (1.0 + max(0.0, maxRGBChannelValue

-1.0));

Lit Particles: Iteration 3

• Big need for per pixel lighting
– Specular highlights
– Avoid painting highlights into textures

• First prototype: 1 per pixel light
– Remaining lights used per vertex lighting
– Two new interpolators: per pixel direction

and per pixel color

Lit Particles: Iteration 4

• Numerous issues with iteration 3
– Popping
– Washed out lighting
– Heavily interpolator limited

• New solution: Averaged per pixel lighting
– Attenuated color same as before
– Light direction for all sources accumulated per

vertex
– Weighted by:

• Incident angle for each light
• Magnitude of light’s color and attenuation

Per-Pixel Blood And Foam

Lit Particles: Iteration 5

• Particles would be dark depending on
lighting direction

• Implemented fake light

Lit Particles: Final Thoughts

• Performance limitations
• Performance benefits

Water: An Artist’s Perspective

• Underwater game? Probably need to make
water look ok.

• Began using existing tech
• Limitations spawned a variety of art requests

Iteration 1 Texture

Final Implementation Textures

(Non) Interactive Waterfalls

(Semi) Interactive Waterfalls

Interactive Waterfalls

Interactive Waterfalls: Iteration 1

• Analogous to 1D shadow mapping
– Camera is placed on top of waterfall, pointed

down
–Waterfall treated like 2D plane, depth values

rendered into 1D row of 2D texture

• Use vertex texture fetch or ATI’s R2VB to
displace particle splash effects

E3 Footage

E3 Footage

Interactive Waterfalls: Iteration 2

• Added a second 1D shadow map, as seen
from the bottom of the waterfall upward
– Allowed outlines to be scissored into the

waterfall

• Added a simulation step
– Gravity!

Water Caustics

• Light that bounces off of water surfaces
• Important in creating water atmospherics

Caustics: Iteration 1

• Texture sequence
• Projectors/Decals used to place effect

Caustics: Iteration 2

• 1 Diffuse texture, sampled twice
– .uv sample + swizzled .vu sample

• Diffuse texture UV’s offset by separate
normal map

Memory Savings

Caustics: Iteration 3

• Use modulate blend mode
– Simulates surface brightening

Water = Lighting

• Controlling how light hits water surfaces
is very important

• Special lighting system extension gave
artists precise control over light
contributions

Interactive Rippling Water

• Considered four basic approaches
– Exposing ripple locations to entire fluid

surface shader
– Dynamically tessellating fluid surfaces around

ripple areas using Delaunay Triangulations
– Dynamically tessellating fluid surfaces around

ripple areas using real time 2D BSP trees
– Deferred rendering approach

First Approach

• Bind an array of ripple locations to pixel
shader

• For each pixel
• For each ripple
• Calculate UV’s, sample ripple normal map

• Performance of every pixel bound by
number of ripples on entire surface

Tessellation Approach

Delaunay Triangulation Method

• Run Delaunay Triangulation using all ripple
quad corners

• For each triangle generated
• Generate UV’s for all ripples the triangle

intersects

• Batch triangles according to how many
ripples they were affected by

Issues with Delaunay Method

BSP Method

• Build 2D BSP tree using edges of each
ripple quad

• Last edge added from ripple quad is
flagged to indicate child leafs are
affected by that ripple

• Post build, tree could be traversed,
adding new geometry for each BSP leaf.

Deferred Rendering Approach

• Render all ripple info into a ‘Ripple
Buffer’
– Same resolution as main color/depth buffers
– Signed FLOAT16 buffer allows normal and

diffuse to be stored without MRT

• Store normals in local space to the water
surface

• Sample ripple buffer from fluid shaders in
screen space

Fire Optimization

• Having art and tech on the same page
during optimizations is priceless!!

• Fire optimizations:
– Merged multiple particle emitters and lights

into single emitters and lights
– Scaled particle size, spawn rates depending

on parent object size
– Reduced particle spawn rates where possible

Questions? 
 

Stephen.Alexander@2kboston.com  
Jesse.Johnson@2kboston.com

mailto:Stephen.Alexander@2kboston.com
mailto:Jesse.Johnson@2kboston.com

