
Bringing UE3 to Apple's
iPhone Platform
Josh Adams
Senior Console Programmer
Epic Games
josh.adams@epicgames.com

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[Background]
Me
✇ Engine Programmer at Epic

✇ 5+ years at Epic
✇ 13+ years in industry

✇ Console focused
✇ Unreal Tournament – Dreamcast
✇ Unreal Engine 2 – PS2/Gamecube
✇ Unreal Engine 3 – PS3

✇ iPhone = Console!

[Background]
You
✇ Talk assumes some iPhone

experience
✇ You’ve compiled and run an app or two
✇ Read some docs/sample code, etc

✇ If not, feel free to ask me after the
talk!

[Background]
The Talk
✇ Sharing developer experiences

✇ No small effort
✇ Unreal Engine 3 – 2 million lines of code
✇ iPhone – Fits in your pocket

✇ Hope it can be of use to you!

✇ (Note: look for *’s – they are Gotchas!)

[Background]
Why iPhone?
✇ 3GS has OpenGL ES 2.0

✇ Programmable shaders

✇ Huge install base
✇ Many are pre-3GS (for now, anyway)

✇ Fun, “can we do it?” project

[Background]
Unreal Engine 3
✇ Multiplatform

✇ Shipped platforms
✇ Windows, Xbox 360, PS3
✇ UDK – free version of UE3

✇ Unsupported platforms
✇ iPhone, NVIDIA Tegra2, Linux, Mac

✇ 2 layers
✇ Platform independent – 90%
✇ Platform specific (engine and DLLs)

[Background]
Unreal Engine 3
✇ Rendering Engine

✇ Materials, streaming worlds, visibility, …

✇ Gameplay Engine
✇ Script code, physics, AI, …

✇ Third party integration
✇ SpeedTree, Scaleform, PhysX, Bink, …

Demo

<Demo>

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ Compiling w/ Xcode
✇ Objective-C integration

✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ Compiling w/ Xcode
✇ Objective-C integration

✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[Bringup – Compiling]
Problem
✇ iPhone is Mac-based

✇ UE3 uses a Visual Studio solution

✇ UE3 is cross-platform
✇ How to fill in the iPhone-holes?

[Bringup – Compiling]
Xcode project
✇ Used OpenGL template project
✇ Mimics Visual Studio project

✇ Have to keep in sync, though

✇ Only game subsystems
✇ No editor or other Windows-only stuff

[Bringup – Compiling]
Xcode project
✇ Copied over preprocessor defines

✇ User defined variables -> awesome!
✇ CONFIG_DEFINES: -DFINAL_RELEASE=1
✇ TARGET_DEFINES: -DGAMENAME=UTGAME
✇ GLOBAL_DEFINES: -DIPHONE=1
✇ Other C++ Flags:

✇ $(OTHER_CFLAGS) $(CONFIG_DEFINES)
$(GLOBAL_DEFINES) $(TARGET_DEFINES)

✇ (same for all configs/targets)

[Bringup – Compiling]
Missing Pieces
✇ Added new UE3 platform

✇ Header to map types

✇ Implement interface sub-classes
✇ UE3 has base classes for major interfaces

✇ Memory allocator
✇ File manager
✇ Threading routines

✇ IPhoneTools.dll

typedef uint64_t QWORD; // 64-bit unsigned

[Bringup – Compiling]
Missing Pieces
✇ One conceptual piece at a time

✇ Core, Engine, Net, GameFramework, UT3

✇ Had done gcc for PS3, helped, but:
✇ *wchar_t is 4 bytes!*

✇ Had to handle UE3 Unicode 2-byte chars on
disk vs. libc functions needing 4-bytes

typedef uint16_t UNICHAR;// on disk
typedef wchar_t TCHAR; // in memory
#define TCHAR_IS_4_BYTES 1

[Bringup – Compiling]
Vector intrinsics
✇ High level intrinsic “language”

✇ Each platform defines type and functions
✇ Implemented Neon intrinsics
✇ *Xcode 3.2 Internal Compiler Error*

#define VectorRegister float32x4_t

FORCEINLINE VectorRegister VectorAdd(VectorRegister
Vec1, VectorRegister Vec2)
{

return vaddq_f32(Vec1, Vec2);
}

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ Compiling w/ Xcode
✇ Objective-C integration

✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[Bringup – Obj-C]
Problem
✇ UE3 is all C++

✇ What about this Objective-C stuff?
✇ Callbacks
✇ Animation system

[Bringup – Obj-C]
iPhone<–> UE3 “glue”
✇ Objective-C integration

✇ Whole game doesn’t need to be Obj-C!
✇ Total of 4 .mm files (could be less)

✇ Some is still needed, i.e.:
✇ Startup (UI, GL init)
✇ API wrapper functions (Called from C++)

✇ presentRenderBuffer
✇ NSSearchPathForDirectoriesInDomains

✇ Input/tilt callbacks from OS

[Bringup – Obj-C]
Startup process
✇ applicationDidFinishLaunching

✇ Creates main game thread
✇ Engine is now “independent” entity
✇ No Animation, CADisplayLink or Timers

✇ Enables accelerometer
✇ Sets app as delegate for callbacks

✇ Show splash screen UI layer
✇ Layer on top of EAGL layer
✇ Shows the Default.png

[Bringup – Obj-C]
Startup process
✇ applicationDidFinishLaunching

✇ Start ‘hide splash’ timer
✇ Timer function called every 100 ms
✇ Looks for main thread ‘has booted’ flag
✇ When flag is set:

✇ Hides UI layer
✇ Kills timer

✇ Returns to OS quickly
✇ OS watchdog kills app if too slow (15 sec)

[Bringup – Obj-C]
Thread structure

iPhone OS

applicationDid
FinishLaunching()

touchesBegan()
touchesEnded()

void ThreadProc()
{
 UE3Engine Engine;
 Engine.Init();
 GEngineHasStarted = true;

 while (Engine.IsRunning())
 {
 Engine.Tick();
 ProcessIPhoneInput();
 [CtxpresentRenderBuffer];
 }

 Engine.Exit();
}
 (Note: Egregious pseudocode)

EventQu
eue

iPhone Thread UE3 Main Thread

OS

accelerometer()

UI Timer (.1s)

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept

✇ Code
✇ Tools

✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept

✇ Code
✇ Tools

✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[What we kept – Code]
General
✇ Almost everything!

✇ File formats
✇ Math routines
✇ Collision
✇ Gameplay
✇ etc

[What we kept – Code]
General
✇ Script code

✇ Same compiled code as all platforms
✇ Some runtime platform checks, though

✇ Wrapper code from Linux
✇ Types (INT, QWORD, etc)
✇ Threading (BSD sockets)
✇ FileManager (fopen, etc)

[What we kept – Code]
File management
✇ File writing redirection from Win32

✇ Win32:
✇ Program Files security restricts writes

✇ iPhone:
✇ Can’t write to signed .app dir

✇ Only write to Documents directory
✇ Try to read from Documents dir, fallback

to install dir
// use the API to retrieve the Document dir
NSString* Dir = [NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES)
 objectAtIndex: 0];

[What we kept – Code]
RHI
✇ RHI (RenderHardwareInterface)

✇ Thin layer between rendering thread and
platform’s API
✇ RHICreateVertexBuffer()
✇ RHISetBlendState()
✇ RHIDrawIndexedPrimitive()

✇ Hides D3D, GL, etc from engine

[What we kept – Code]
Lighting
✇ LightEnvironments

✇ Gathers static and/or dynamic lights
✇ Many lights into one or two lights

✇ Directional, Spherical Harmonic, Ambient
✇ Updated ‘infrequently’
✇ Great for iPhone

✇ Rendering cost of 1 light
✇ Visually, many lights from artists/gameplay

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept

✇ Code
✇ Tools

✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[What we kept – Tools]
Content
✇ Editor – critical!

✇ Artists build levels the same way
✇ Mesh importing
✇ Material creation
✇ Gameplay placements

✇ Cooker
✇ Same pipeline of moving PC-format assets

to consoles

[What we kept – Tools]
Helpers
✇ UnrealFrontend

✇ Controls UE3 games
✇ Launching game
✇ Cooking content
✇ Compiling script
✇ Syncing files

✇ UnrealConsole
✇ Captures output from all platforms
✇ Reports crashes

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Input
✇ Renderer
✇ Tools

✇ Workflow Changes
✇ Where To Go From Here

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Input
✇ Renderer
✇ Tools

✇ Workflow Changes
✇ Where To Go From Here

[Changes we made – Input]
Problem
✇ No keyboard/mouse/controller

✇ How to use touch events effectively?

[Changes we made – Input]
Input “glue”
✇ Touch callbacks in Objective-C

✇ Pushed to game thread in a queue
✇ Frequency higher than game thread

✇ Game thread pulls off once a frame
✇ Process all outstanding input, in order

touchesBegan()
touchesEnded()

 while (!Engine.IsRunning())
 {
 Engine.Tick();
 ProcessIPhoneInput();
 [CtxpresentRenderBuffer];
 }

accelerometer()

EventQu
eue

[Changes we made – Input]
Input “glue”
✇ Game thread processing

✇ Tracks each touch over time
✇ Looks for closest touch from last frame
✇ Close finger drags can confuse it
✇ *Drag off edge and back breaks tracking*

✇ Turns into Press, Hold, Release events
✇ Standard UE3 input messages

[Changes we made – Input]
Input “glue”
✇ Accelerometer (tilt) also from API
✇ Not a queue

✇ Updates game thread with latest values

✇ Tried using magnetometer
✇ Figured it could enhance turning info
✇ Unusable results
✇ Also, quite CPU-intensive

[Changes we made – Input]
Input feedback
✇ Input Zones

✇ Mimics a gamepad button or stick
✇ Hooked up to UE3 Input Binding system

✇ Data driven touch screen zones
✇ “Button” types

✇ Tracks clicks/drags
✇ Imagine Windows Button controls

✇ “Stick” types
✇ Sends floating point X/Y axes to game

[Changes we made – Input]
Input feedback
✇ Input Zones (cont’d)

✇ “Tilt” types (hidden)
✇ Sends floating point X/Y axes to game
✇ Important to have a calibrate option

✇ MobileHUD base HUD class
✇ Draws zones and state info

✇ Highlighted while pressed
✇ Stick types show current location

✇ Input handling code updates Zone state
✇ Can draw on PC for testing

[Changes we made – Input]
How it looks

Stick zones
(whole
screen
draggable)

Button zone

Tilt zone (shows current tilt)

White circles
shows touch
locations

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Input
✇ Renderer
✇ Tools

✇ Workflow Changes
✇ Where To Go From Here

[Changes we made – Renderer]
Problem
✇ Mobile GPU

✇ Less powerful
✇ OpenGLES

✇ UE3 games have thousands of
shaders

[Changes we made – Renderer]
OpenGLES
✇ Added OpenGLES RHI

✇ Started with existing OpenGL RHI

✇ Rewrote much for ES
✇ New shader system
✇ Added PVRTC support
✇ GL driver CPU overhead noticeable in perf

✇ State caching, reduce draw calls
✇ *16-bit indices*

[Changes we made – Renderer]
Shaders
✇ UE3 = thousands of shaders

✇ Several (5-20) shaders per artist material

✇ iPhone = no offline compiling
✇ Something has to change!

[Changes we made – Renderer]
Shaders
✇ Example UE3 material:

[Changes we made – Renderer]
Shaders
✇ Handwritten shaders

✇ Based on primitive/lighting
✇ Static mesh with texture lightmap
✇ Static mesh with vertex lightmap
✇ Static mesh unlit
✇ Particle
✇ Skeletal mesh with lighting
✇ …

✇ But, needs to look like original material!

[Changes we made – Renderer]
Shader simplification
✇ Material Flattening

✇ Materials are auto-flattened to a texture
✇ Can override auto-texture with

hand-painted version
✇ Editor/PC game can emulate with UE3

materials that mimic ES shaders

UE3 material, 60 instructions

[Changes we made – Renderer]
Shader simplification

Single texture, few instructions

[Changes we made – Renderer]
Shader simplification

Mobile EmulationPC Native

iPhone

[Changes we made – Renderer]
Shader simplification
✇ Benefits

✇ Allows for normal art pipeline
✇ Fast runtime on mobile devices
✇ Only a few shaders to compile
✇ Usually fewer textures to load

✇ One per material instead of N

✇ Drawback
✇ Can’t share textures between materials

[Changes we made – Renderer]
Textures
✇ UE3 = DXT textures

✇ ~98% of textures are DXT

✇ iPhone = PVRTC
✇ Something has to change!

[Changes we made – Renderer]
Textures
✇ Offline conversion

✇ DXT1 -> PVRTC2 (2 bits per texel)
✇ DXT3,5 -> PVRTC4 (4 bits per texel)

✇ Cache converted mips w/ source
✇ *PVRTC conversion is slow*

✇ ES2 RHI remaps format
✇ Engine textures marked as DXT
✇ RHI treats DXT as PVR, under the hood

[Changes we made – Renderer]
Rendering Passes
✇ Simplified rendering passes

✇ Render world
✇ Render foreground into depth partition
✇ No depth-only pass
✇ No per-light passes

✇ Skeletal mesh shader supports one merged
light

✇ No occlusion queries
✇ Unfortunately!

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Input
✇ Renderer
✇ Tools

✇ Workflow Changes
✇ Where To Go From Here

[Changes we made – Tools]
Content
✇ Editor

✇ Material flattening support
✇ Mobile emulation

✇ Cooker
✇ Cook on PC, then copy to Mac via script
✇ Xcode script to copy cooked data into .app

✇ A Run Script phase in each Target

SRC=${PROJECT_DIR}/../FromPC/${TARGET_NAME}/Cooked
DST=${BUILT_PRODUCTS_DIR}/${UNLOCALIZED_RESOURCES_FOLDER_PATH}
cp –Rf ${SRC} ${DST}

Topics

✇ Background
✇ Method of Attack
✇ Workflow Changes

✇ Compiling
✇ Signing
✇ Installing
✇ Debugging

✇ Where To Go From Here

Topics

✇ Background
✇ Method of Attack
✇ Workflow Changes

✇ Compiling
✇ Signing
✇ Installing
✇ Debugging

✇ Where To Go From Here

[Workflow Changes – Compiling]
Problem
✇ UE3 toolchain is Windows based
✇ How to leverage?

✇ Can’t remove Mac from process
✇ No Jailbreaking, please!
✇ Windows + Mac = ☺

[Workflow Changes – Compiling]
Moving to Windows
✇ We want to compile from Windows
✇ Mac still does the meat

✇ Compiling, Linking, Signing
✇ Simulator
✇ Debugging

✇ First, add iPhone bits to VS .sln
✇ Now, we can use UnrealBuildTool

[Workflow Changes – Compiling]
UnrealBuildTool
✇ C# utility that controls compilation

✇ .sln is just a file reservoir
✇ UBT parses .vcproj files
✇ Creates build Actions and Dependencies

✇ Added Copy to Mac action
✇ Dependency (input) is local file
✇ Output file is remote (Mac) file
✇ Action is file copy (if input newer)

[Workflow Changes – Compiling]
UnrealBuildTool
✇ Needs per-user environment

variables:
✇ MacDevPath – Mac path to dev root
✇ PCDevPath – UNC path to Mac dev root
✇ MacName – Name of user’s Mac

[Workflow Changes – Compiling]
pscp and plink
✇ We use PuTTY command line tools
✇ pscp

✇ Windows network copies messes up
permissions (for us anyway)
✇ A read-only file could never be overwritten

✇ pscp uses proper user logins
✇ *Can’t “write if newer” however*

✇ UBT does that for us for compiling
✇ But, not for bulk copy scripts

[Workflow Changes – Compiling]
pscp and plink
✇ plink

✇ Performs a command over SSH
✇ Used to run gcc and other remote ops

✇ Use PuTTY’s UI to setup auth
✇ Private/public key for SSH auth
✇ Set auto-authenticate for pscp/plink

✇ Setup PuTTY, then save Default config
✇ Allows for one script to work globally

[Workflow Changes - Compiling]
gcc
✇ Boost gcc commands from Xcode

✇ Some cleanup possible

[Workflow Changes – Compiling]
Compiling/linking
✇ Info.plist

✇ Xcode-created file with app settings
✇ Need to replace

✇ ${PRODUCT_NAME}
✇ ${EXECUTABLE_NAME}

✇ UBT calls sed, output into .app folder

Topics

✇ Background
✇ Method of Attack
✇ Workflow Changes

✇ Compiling
✇ Signing
✇ Installing
✇ Debugging

✇ Where To Go From Here

[Workflow Changes – Signing]
Problem
✇ Signing without Xcode is tricky

✇ Commandline tools
✇ Keychain issues

[Workflow Changes – Signing]
Signatures
✇ Xcode internal command:

✇ <com.tools.product-pkg-utility>
✇ (shown as “ProcessProductPackaging”)

✇ Generates:
✇ .xcent, embedded.mobileprovision

✇ Compile empty project with same target
name
✇ .xcent has target name inside

[Workflow Changes – Signing]
Signatures
✇ <com.tools.product-pkg-utility>

✇ Remake .mobileprovision whenever
ProvisioningProfile is updated

✇ Copy generated files to PC
✇ Along with ResourceRules.plist

✇ Check-in for all devs to use in signing

[Workflow Changes – Signing]
Keychain
✇ Uses Mac Keychain, locked in SSH:

✇ Run Keychain Access app
✇ New keychain, same name for all devs
✇ Give it an insecure password, same for all
✇ Install your iPhone cert to login keychain

✇ *Do not install directly to new keychain!*
✇ Drag certificate from login to new keychain

✇ Key will come over with it if “My
Certificates” is selected

[Workflow Changes – Signing]
Keychain
✇ Keychain Access setup:

[Workflow Changes – Signing]
Commandline
✇ Our plink command:

✇ Must be all one plink command
✇ Keychain remains unlocked

plink %MacName%
export CODESIGN_ALLOCATE=/Developer/Platforms/
iPhoneOS.platform/Developer/usr/bin/codesign_allocate;
security unlock-keychain -p pwd UnrealCodesigner.keychain;
/usr/bin/codesign -f -s \“iPhone Developer\"
--resource-rules=%MacAppDir%/ResourceRules.plist
–entitlements %MacBuildDir%/%1.xcent %MacAppDir%

Topics

✇ Background
✇ Method of Attack
✇ Workflow Changes

✇ Compiling
✇ Signing
✇ Installing
✇ Debugging

✇ Where To Go From Here

[Workflow Changes – Installing]
Problem
✇ Xcode automates installing

✇ Remote commandline – not so automatic

[Workflow Changes – Installing]
Device
✇ Organizer window in Xcode

✇ Easier than iTunes

[Workflow Changes – Installing]
Simulator
✇ Installing an app in Simulator

✇ Not straightforward via plink
✇ Use killall to kill running sim app
✇ Copy .app folder to:

✇ Delete all GUID directories in Applications
that contain your game .app
✇ Xcode makes these when debugging

✇ Run game in Simulator by hand

~/Library/Application Support/iPhone
Simulator/User/Applications/PC

Topics

✇ Background
✇ Method of Attack
✇ Workflow Changes

✇ Compiling
✇ Signing
✇ Installing
✇ Debugging

✇ Where To Go From Here

[Workflow Changes – Debugging]
Problem
✇ How to debug in Xcode?

✇ Xcode didn’t build the .app
✇ Xcode needs a project to debug

[Workflow Changes – Debugging]
Xcode project
✇ DebuggerProject

✇ Dead simple Xcode project
✇ Target and Executable for each game
✇ No code needed

✇ Choose Simulator/Device, Debug/Release
✇ Run will install and run “PC compiled” .app

✇ Don’t use Build and Run
✇ Replace Build and Run in toolbar ☺

[Workflow Changes – Debugging]
Debug info
✇ .dSYM file

✇ Takes ~1 minute to generate with UE3
✇ Xcode will always generate it

✇ Even with ‘DWARF’ vs. ‘DWARF with dSYM’
✇ We leave debug info in executable

✇ Make sure to strip for final build!
✇ Still able to use breakpoints, etc.
✇ Profiling:

✇ *dSYM is needed for Instruments*

Topics

✇ Background
✇ Method of Attack

✇ Bringup
✇ What we kept
✇ Changes we made

✇ Workflow Changes
✇ Where To Go From Here

[Where To Go From Here]
Future direction
✇ Newer chips

✇ More power!
✇ Add normal or specular maps, etc

✇ Newer GL drivers
✇ Occlusion queries
✇ SRGB
✇ Use full materials on some

✇ “Hero” pieces get full support
✇ Needs offline compiling, really

[Where To Go From Here]
Future direction
✇ 3rd party library support

✇ Add them when we get them
✇ PhysX, GameSpy, etc

✇ Generate the special Xcode files
✇ .xcent is just .plist with some binary goo
✇ .mobileprovision is painful by hand

[Where To Go From Here]
Future direction
✇ Compiler fix for Neon

✇ Apple says it’s fixed in upcoming version

✇ Auto-run game on Simulator
✇ Undocumented MacOS framework:

✇ iPhoneSimulatorRemoteClient

Q&A

✇ Any questions?
✇ Josh Adams

✇ josh.adams@epicgames.com
✇ Epic Games

✇ www.epicgames.com
✇ Unreal Technology

✇ www.unrealtechnology.com
✇ GDC Booth

✇ ES 202, South Hall
✇ (aka BS200)

