
How To Go From PC to Cross
Platform Development Without
Killing Your Studio

Elan Ruskin
Valve

To see speaker notes, hover over dialog bubble.

Presenter
Presentation Notes
This talk was delivered by Elan Ruskin at the Game Developers Conference in San Francisco in 2008. It covers important differences between PC and console games development, and provides suggestions to a studio making the transition itself for the first time.

These notes are a mixture of my original speaker’s notes along with some transcription of my narrative over the slides, to provide the Web reader with a clear idea of what the original talk conveyed.

We Are a PC Shop That
Recently Added Console.

• Some of this talk may seem elementary
to console-exclusive developers …

• … but each one of these issues has
burned an actual project.

• Experienced console devs will still find
useful info here.

Presenter
Presentation Notes
At Valve, we recently went from PC exclusive development with games such as HL2 to simultaneous cross platform release with The Orange Box.
This talk is based as much on interviews throughout the industry as on our experience at Valve. Each of the problems described here has affected an actual project, not necessarily our own.
We did not have to rewrite our engine from scratch! This talk is about porting an existing engine from PC to console and having it work as well as a native game.

This Is a High-Level Talk

Presenter
Presentation Notes
This talk really presents a Martian’s-eye view of the pitfalls between PC and Console development. I could discuss particular technical issues in detail, but I’d need to cherry-pick two or three and spend twenty minutes really drilling down on each. I think that sort of thing is better suited to a PDF file than a lecture, so what I’m going to do here is just show you the most serious issues and give hints on how to get started on working on them. Think of it as a map of mistakes you can avoid.

Photocredit: NASA

This Talk is Based On:

• Our work at Valve
• My work elsewhere
• Interviews with others throughout

industry

Presenter
Presentation Notes
Like I said before, this talk is based not only on our experience at Valve, but my own experience at other studios that made this transition, and on interviews I conducted with other developers all over the industry. This is more of a research talk.

What Landmines Await A PC
Developer Going To Console?

Presenter
Presentation Notes
There are lots of pitfalls and caveats that face a PC developer going to console, differences in workflow that present sort of a minefield to the unwary developer. Lots of people have made this same transition before you

Consoles are like PCs…

A PC

=
Closed Platform+

Manufacturer QA+

Limited Memory+

Presenter
Presentation Notes
If you take a PC…
Make it a closed platform…
Have manufacturer-driven QA…
And very limited memory….
You get a console.

Common Problems of
Crossplatform Development

• Developer Efficiency

• Certification Failure

• User Experience

• Programming Issues

Presenter
Presentation Notes
This tends to get studios into trouble in a few characteristic ways.
First among them seems to be that the workflow is different for consoles -- you may not have the right staff for the job early on, or you may have trouble iterating as fast as you’d like.
Or, there’s certifcation -- that manufacturer QA process -- where you have to meet certain very specific requirements or you don’t get to ship your game at all.
Even if you do ship, you want to make sure the customer experiencce is equally good on every platform, or you may hurt the brand.
And finally there are some specific programming issues that I’ll tell you how to address.

Targeting Console is Similar
to Targeting a Minspec PC

• Valve always tiers our PC experience

Midrange (Shader Model 2)
Low-end (DirectX 8)

High-end (Shader Model 3)

Presenter
Presentation Notes
There’s also some similarities between PC and console development. Currently, targeting a modern console is pretty similar to targeting a low-end PC.
At Valve, we do ongoing surveys to tell us what kind of PCs our customers are really using, and we use that to tier our game experience so it looks its best on as many machines as possible.
We basically have three tiers -- the high end, which is DirectX9 Shader Model 3 cards like the GeForce 7600, the midrange, which is like a Radeon 9600, and the low end, which is everyone stuck in DirectX 8 land.
We found that the 360 had the Shader Model 3 feature set -- and more -- but its fill rate was closer to a midrange PC, so we slotted it in right… there.

The key thing here is: if you look good on DX9, you can look good on the console.
Don’t fall into the trap of saying “we’ll make our game look awesome on the bleeding-edge highend PC hardware, and just drop features to make it work on the midrange.” That midrange ends up being your console target, and hardly anyone owns a high-end PC.
If you want to make money, tune for the mass market experience.

Now We Know Where The
Mines Are…

Presenter
Presentation Notes
Okay, so now we know what landmines are lying in wait for you. Let’s get to how to deal with them.

Photocredit: Minesweeper: The Movie. Collegehumor.com

Common Problems of
Crossplatform Development

• Developer Efficiency
• Staff allocation
• Trouble Iterating

• Certification Failure
• User Experience
• Programming Issues

Presenter
Presentation Notes
Problem one: not having the right staff to begin with. Let’s talk a bit about the people who form the nucleus of your console team.

The Core Team

• The Console Person
• Your most experienced programmer.
• Understands the entire codebase.
• Senior enough to affect schedule.
• Gets the game running for the first

time.
• Becomes an oracle by project end.

Presenter
Presentation Notes
Your team starts with The Console Guy.
He (or she) sets up makefiles, builds the directories, gets the game running on the console in the first place.
You want a senior engineer on this. This person needs to understand many of your game’s systems, because she’ll be addressing all the initial work of making them work on the 360 or PS.
More importantly The Console Guy needs to be senior so he can push back on management, tell the producer, “We’re working on load times for two weeks”, or “that feature is just not going to fit on the PS3.”
This developer won’t have her hands in every system, but will become a very useful resource for everyone else because she’ll know more about the initial implementation and the process of getting exe onto the console than anyone else.

The Core Team

• The TCR (Technical Certification Requirements)
Expert

• Producer, Programmer, or QA.
• Learns every item on Microsoft/Sony’s

certification checklist.
• Builds test cases.
• TCR is not a job for one programmer.

• Does need one person in charge.

Presenter
Presentation Notes
The Certification Expert -- the guy who’s always worrying about passing Microsoft QA.
You could have a programmer on this, but I think it’s better suited for a producer or a QA lead.
This is the person who’s going to make sure that certification requirements get built into the architecture of the game from as early as possible, and keeps you from going in a direction that’s going to cause you to fail.
One programmer is not going to fix your savegames and load times and framerate, but you do need one person with all the requirements in his head so you don’t accidentally break one of them when fixing another.

The Core Team

• The Devkit Guy
• Gets people up and running.
• Sets up artists to look at their levels,
• Gets programmers set up with their

debugger.
• Isn’t a full time job, but can be a major

distraction.
• Doesn’t need to be a lead.

Presenter
Presentation Notes
If you have the manpower, nominate someone to be the expert on getting development kits set up for the team.
Doing IT work on all the development kits can be a big distraction for The Console Guy. Running all those setup scripts and dealing with network issues can take hours.
And artists just want to get set up and start working.
So nominate someone who isn’t a lead to be an expert on this. It’s not a full time job but it is more efficient to have one person really understand it.

Common problems of cross
platform development

• Developer Efficiency
• Staff allocation
• Trouble Iterating

• Certification Failure
• User Experience
• Programming Issues

Presenter
Presentation Notes
Next up: workflow efficiency.

Problem: Iteration is slow.

• Iterating on PC:

• Iterating on Devkit:

Presenter
Presentation Notes
If your engine is native to the PC, it’s generally going to be faster to iterate on pc.
It’ll just be faster to hit F5 in visual studio and run on your workstation than to copy the exe and the assets over to the xbox hard drive, run it there, wait for it to boot up, etc.
Of course only true if your engine is not console native. Console native engines will iterate faster on console of course. I guess that would be a picture of a snail riding a cheetah?

Photo credits:
Cheetah -- http://flickr.com/photos/dvd5/163374390/
Snail -- http://flickr.com/photos/mamboman/501014349/

Keep your PC version
working.

• Debug and load times always faster
on PC than console.

• Runtime iteration much easier on PC
• Edit & continue
• Reloading assets

• Compiling slower for console target

Presenter
Presentation Notes
So, as much as possible, try to keep the PC version of your game working. It will make iteration much easier.

In addition to launching faster, you may also have runtime iteration on PC, like being able to edit&continue code, or replace textures and sounds without relaunching the engine.
Naughty Dog in particular has excellent support for this with their console-native engine.
Console compilers are slower for some reason
Incredibuild helps.
You definitely don’t want that huge header file included by all the world.

Simulate console content
features on PC

• PC workflow is more comfortable for
artists

• PCs are cheaper than devkits
• Encourages experimentation

Presenter
Presentation Notes
Create a variable or an #ifdef that lets you simulate console’s graphics feature set on PC – that makes the PC game run with exactly the feature set and look that the console game will have.
This lets artists tune the console content on their PC, and means you have to buy fewer development kits.
It also lets artists work faster.

Cross platform assets

• Consoles have their own formats.
• Do you byte swap on load?

• Consoles prefer assets compiled into
big files.
• PCs have disk caches.

Presenter
Presentation Notes
Keeping two versions running means keeping two asset trees.
But each platform has its own formats.
Do you use PC assets and force the console to convert them on load? That’s slow!
Also consoles need big packed up files, while PCs are fine with directories full of loose textures. On a PC, each subsequent time you hit all those individual texture files will be faster, because of Windows’ disk cahce. On the console, it’s orders of magnitude slower.

The Catch-22:

Load asset files
individually:

launch times longer

Changing data faster

Compile paks:

code changes faster

data changes slower

Presenter
Presentation Notes
There is a dilemma. If you keep all your asset files loose in directories, it makes load times much slower, but artists can touch individual textures or models and see their changes without having to recompile everything. On the other hand, if you force artists to recompile the packed-up file every time they make a change, their work flow is much slower, but load times are better for programmers and QA.

Our hybrid solution:

• Compile asset tree into
paks nightly.

• Artists specify individual
assets to override locally

• Best of both worlds

Presenter
Presentation Notes
So do it both ways!
Source has a hybrid system by which you can say "these assets have been updated, don't load them from the pak file, because they're what I'm working on.“ Instead it loads those specific assets from the artist’s hard drive.

Branch In Pipeline,
Not In Source

• You will need to
recompile every asset

• Try not to diverge assets
• Make tools deal with

platform differences,
instead of artists.

• Keep the source art for
everything.

Source

PC

Console

Presenter
Presentation Notes
Eventually you are going to need to recompile every asset to the native format for each platform – endianness and alignment and other such issues cannot be dealt with by forcing the 360 to reprocess PC assets at load time.
Don’t make your artists maintain parallel source content -- the PC source, the 360 source, the PS3 source, etc.
Try to diverge the assets in the pipeline.
It’s actually fine to compile from source to PC and PC to console. You will lose precision in some cases, so hang on to the source art.

Common problems of cross
platform development

• Developer Efficiency
• Certification Failure

• Out Of Memory
• Starting Too Late
• Multiplayer

• User Experience
• Programming Issues

Presenter
Presentation Notes
Okay, let’s move on to certification. That’s the manufacturer’s QA of your product.

Technical Certification Requirements /
Technical Requirement Checklist /
CERT

• The process by which
console manufacturer
ensures quality.

• A specific list of
requirements that your
game must meet.

• Pass, or don’t ship.

Presenter
Presentation Notes
Microsoft calls it TCR and Sony calls it TRC. Either way, it’s how the manufacturer ensures the quality of the product. It’s how Joe Consumer knows that when he takes a 360 disc home to his x-box, it’ll run well, have uniform dialogs, not crash.
It’s a very specific list of requirements and the tests run to see if you meet them.
Usually the manufacturer will give you the test so you can run it yourself and know if you are going to pass or not.
You build a disc, submit it to manufacturer, get back a report of exactly which ones you passed or failed.
If you don’t pass the manufacturer’s tests, your game does not ship; you have to fix all the issues and go back through the process, which can take weeks.

You really, really want to pass certification on the first time. Otherwise you may waste a lot of marketing dollars.

Most Common Problems:

• Stability
• UI – very specific requirements
• Savegames

• Need to be completable with no save
media

• Online / LIVE

Presenter
Presentation Notes
These seem to be the most frequent causes of certification failure that I’ve seen.
If the game crashes, it doesn’t pass, of course.
UI seems to be a lot of work, not because it’s hard really, but because TCR has really specific requirements for layout and wording and graphics and it can take a long time to get everything right.
Savegames seem to be an issue for a lot of developers. Especially on the 360, because the Core system may have neither a hard drive nor a memory card, so the game must be playable end to end without saving to disk.
If you have a multiplayer, online, or Live component, it’ll be a huge source of work.

Problem:
Game Runs Out Of Memory.

PC: Console:

Presenter
Presentation Notes
The biggest source of stability problems on consoles is running out of memory.

Exceeding physical memory on PC means you start disk swapping and get slow.
Exceeding physical memory on console means you crash.

Photo credit:
Snail -- http://flickr.com/photos/inkswamp/165508993/

Memory

• Memory is critically strict.
• The #1 reason levels get changed.

• The later you wait, the more drastic the
cuts.

• You will always wish you had worried
about memory sooner.

• Account for everything.

Presenter
Presentation Notes
Memory target is critically strict on console
If a PC allocates too much, it thrashes the disk and gets slow.
If a console allocates too much, you’re dead.

Memory is the number one reason levels get changed between the PC and console version.

The later you wait to do this, the more serious your cuts will be: cutting parts out of levels, getting rid of entire characters, and other nasty things that hurt your design.
So, account for all your memory. Everything.

Dynamic Allocation Is Bad.

• If you don’t know how much memory
you’re going to need, you don’t
know if you’re going to run out.

• PC games tend to allocate memory
ad-hoc.

• Keep track of where it goes.

Presenter
Presentation Notes
Generally speaking, dynamic memory allocation is bad on console. Most native console engines can look at a level file and know what their footprint will be like. This is useful, because if you know your levels won’t go over memory and crash!
Unfortunately PC engines tend not to roll that way. They allocate their memory as they need it, and you can’t tell from data on disk how much that will be.
So, at last you can keep very careful track of your memory, and build fences around it.

Where Does Memory Go?

• Executable code
• Does not change at runtime.

• Assets
• Textures, level geometry, models,

animations, sound, sprites, …
• Loaded into memory from disk.

• Heap
• Data generated at runtime by code.
• Anything that is not assets.

Presenter
Presentation Notes
These are the three categories of memory use that I consider.
The executable itself never grows or changes, so you know in advance how big it’ll be. Easy.
Assets are basically anything an artist puts on the disk, and that you load from the disk into memory without changing.
Heap is everything else – mostly data that the code generates procedurally: entities, particles, simulation data, and so on.

Assets Have Grown Faster
Than Heap.

0
128
256
384
512

XBOX 1 XBOX 360

Half-Life 2 Memory Use

Assets
Heap
Code

Presenter
Presentation Notes
Graphics assets have grown much more than code heap. Even though the amount of memory available has grown from one console generation to the next, the proportion of that consumed by assets has grown disproportionately.

Squeezing assets, Step 1:
Account.

• Track every asset allocated.
• Emit spreadsheets for each level.
• Automate this process.
• Do it every night.
• Will highlight all serious problems...
• … and make new ones obvious.

Presenter
Presentation Notes
So, let’s start with assets.
Write your libraries to record every byte allocated for every asset. Every single texture and model. Everything.
Now that you have this recorded, report it in the game, so your artist can load a level and see, “Ah: 50mb of memory in this level are being consumed by these twelve 1024x1024 textures.”
In fact, once you can report it in the game, report it to an offline spreadsheet.
See if you can make it a command line option to fire up the game, load a level, and dump the report.
If you can do that…. Automate it! Do it offline every night!
If you have daily memory reports, you know exactly which of your levels are in or out of memory at any given time, and if one goes back over the line from one day to the next, you’ll know about it immediately.

Squeezing assets, step 2:
Compress.

• Use platform-specific formats.
• XMA, AAC have good ratios

• Leverage your shaders’ and SPU’s
power
• Compress normal maps, grayscale

textures, animations…
• May need to split up textures

Presenter
Presentation Notes
Okay, let’s start making our data smaller.
The easiest thing to do is just to compress it by going over to console native formats.
Audio formats in particular are great on both consoles. We got excellent compression.
You have a lot of shader and SPU power on the consoles, so you can leverage that along with the native formats to compress textures and vertices and models as well.
If you have single-bit or grayscale alpha maps (or other channels) in textures, you may get better results by splitting them into their own textures.

Squeezing assets, step 3:
Reduce.

• Budget your
textures / models
/ meshes
carefully.

• It’s easy to just
downsample all
your textures…

• But you can get
much better
results with careful
targeting.

Presenter
Presentation Notes
Compression only gets you so far. At some point, you need to have less data. But where?
Budget your reductions carefully. I take the example of textures. The easiest thing to do would be to just downsample everything – reduce all textures by half, or to one quarter. But that makes your game look really ugly.
If you are careful, you may find that you can get significant memory savings just by downsampling a few very large textures, or doubling up on similar textures, without seriously impacting the visual quality of the game.
Here, the picture alternates between carefully targeted reduction, and a straight downsample of all textures.

Squeezing textures
• 20% of the textures are 80% of the problem.
• Source has tools to show us which 20%:

Presenter
Presentation Notes
The 80/20 rule still applies, but which is the 20%?

We have a nifty tool that was very useful to shipping a good looking game on 360.
You can view textures in-game in a graphical way.
Also, you can dynamically adjust the MIP level in the ingame interface, so while looking at the scene carefully reallocate your texture pixel budget between textures rather than just LODding every texture down by 1 or 2 levels and making everything look crappier.
 This interface shows you how much memory is spent on textures. The biggest trouble makers are sorted to the top, and it runs in the live game. By default it shows you the textures presently in view.

Squeezing textures

• Halving one 1024x1024 texture saves as much
memory as eliminating 32 128x128’s.

• Focus on what’s actually visible, so you can
reduce where no one will notice.

Presenter
Presentation Notes
Don't just mip down everything, be careful about way you mip.

Here you see a video of our dynamic level of detail selection tool at work. I select the rock’s texture, then dynamically adjust it up and down until I find a “sweet spot” of memory reduction with less visual impact. With a button press I can save that level of detail back out to the tool chain so future compiles will automatically downsample to the chosen level of detail.

Precomputing the size of textures in memory meant we could do useful work in LOD’ing textures or other asset changes to crunch things down even at desks without devkits.

Squeezing assets, step 4:
Maintain.

• Staying in memory is everyone’s job.
• Know exactly when and where

regressions occur.
• Find exactly which change to blame.

Presenter
Presentation Notes
Staying in memory is everyone’s job.

If you make data, you can make the data go over memory.

What do you do when a level is over memory?
We would look at the tools for vertex data, texture data, and the general memory budget tool, track down things by region. It’s all pretty arduous if you haven't budgeted your memory allocation from the beginning.
Once the tracking is in, keeping the level in memory is much easier.

So, this is why paying the daily tax of memory tracking is worth while. If you just do a big memory footprint run every month, you’ll have gone over every month, your artists will have wasted a lot of time making needless detail, and it’ll be harder to get back into memory each time. The better the granularity of your tracking runs, the more easily you will find exactly the changelist to blame for putting you over memory.

Fast, accurate blame is key to staying in memory.

Squeezing assets, step 5:
Panic.

• If all else fails… split levels.
• Remove characters.
• Decimate textures.
• Downsample animation.
• Dealing with memory sooner will

spare you all these painful measures.

Presenter
Presentation Notes
Okay, you’re two months away from ship. You can do all these things. You can even downsample your models, God help you. It’ll get you back into memory, but these are all things that hurt your design. Worrying about memory sooner, and making sure you are always inside it, will avoid this kind of pain at alpha time.

In An Ideal World

• Memory would be allocated at load
time…

Code Geometry Textures Sound Stack

Entities

0x
10

00
 00

00
0x

11
00

 00
00

0x
13

00
 00

00

0x
16

80
 00

00
0x

19
00

 00
00

0x
1F

00
 00

00

Presenter
Presentation Notes
Ideally you could look at your level file and know exactly how your memory footprint will work.

Managing Heap Growth

• Many games load assets ad hoc
• Textures, models, animations, sound

• Code generates data too
• Spawning entities, particle systems, AI

state…
• Crashes most likely in level loads

Presenter
Presentation Notes
PC games don’t work like that. They tend to allocate memory as they go.
The most likely place for you to run into trouble is on transitioning levels.
Usually it takes more memory to load a level than to play it, because you’re getting rid of the assets from the previous level, loading in new ones, you have all the IO buffers, and all your systems are reinitializing themselves, causing all your memory pools to grow a bit at a time in wafer-thin increments, until like that character from Monty Python’s Meaning Of Life…. Blam.

malloc() Considered Harmful
(new/delete too)

• Gameplay systems most likely source
of leaks.

• Good container classes provide
easier management, less leakage.

• Only if you write your own allocator!

Presenter
Presentation Notes
Game systems are the most likely source of leaks, because they iterate so fast, have so many hands in them, and those hands are prone to copying and pasting. Well, that makes it easy to copy the new but forget to paste the delete.
So, I strongly advocate you avoid having new and delete.
Having good container classes gives you much of the flexibility of dynamism with less risk. In our game very few systems do manual memory management.
But, containers only work well if you write your own allocator. Otherwise, continually creating and destroying containers will result in heap churn, fragmentation, and slow death.
STL is especially guilty of this. For example, instantiating a std::string on the stack will result in allocations. Continually reallocating and copying data around really kills you.

WHYTO: Make A Custom
Memory Allocator

• Replace malloc(), calloc(), new, etc.
with your own code.

• Better than STUDIONEW,
STUDIODELETE macros:

• No big search and replace.
• You can’t fix all the new/deletes in 3d

party libraries…
• … so link them to your own allocator.

Presenter
Presentation Notes
Yes, you can write your own malloc() and replace the runtime library’s version with it.
This is better than writing new functions for it – like VALVENEW() and VALVEDELETE() or whatever – and doing a huge search-and-replace in your codebase. For one thing, you’re likely to miss something in that S&R. Also, the new guy won’t know about it when you hire him. And if you license a third party source library, you can’t go and replace all its news and deletes. But you can force it to use your version of malloc()!

HOWTO: Make A Custom
Memory Allocator

• Override every function in the CRT .obj that
contains malloc:

• malloc, free, calloc, realloc…
• Put your implementation in its own .cpp
• Link this .cpp to every project in your game.
• Only works if you override the whole

module...
• … so you need to re-do this if you change

compilers or CRTs.

Presenter
Presentation Notes
And this is how to do it!

pwn your memory

• If you own every allocation, you can track
every allocation.

• Even those coming from the STL.
• Write global fixed-size pool allocators.
• Limit fragmentation.
• Look up the Translation Lookaside Buffer.

Presenter
Presentation Notes
If every memory allocation goes through you, you can track everything. You can also employ fixed-size pool allocators to reduce fragmentation and speed up memory allocation. You can even force the STL to use your memory in a sane way. Basically anything that allocates will do so under your control.

This also helps you with the TLB issue on the PowerPC, because you can make your pooled heaps come out of big 16mb pages, rather than lots of the default 64kb ones. This is a nice way to make what could be a very subtle, complicated issue, into a very easy one to fix.

Track Memory Based On
Exactly Who Allocates It

• Budget asset allocation by type
• Texture, geometry, sound…

• Budget code allocation by purpose
• AI::Navmesh, Particles, Rendertarget…
• Not std::vector<int>

Presenter
Presentation Notes
If you’re tracking memory, track it in a way that makes it easy to act upon. Don’t just say, “we’ve allocated 8,000 ints.” That tells you nothing. Credit memory usage to systems or people.

Track Memory Based On
Exactly Who Allocates It

Thingy *WasteMemory(Thingy* input,
std::vector<Thingy> &list)

{
MEM_ALLOC_CREDIT(IMPORTANT_SYSTEM);
globalSystemList.AddToTail(input);
list.append(*input);
Thingy *output = new Thingy;
output = DeepCopy(input);
return output;

}

Presenter
Presentation Notes
This is pseudocode for the way Source does it. Basically we can use scoping rules – again, because we own the allocator – to credit all allocations inside a function to an arbitrary tag. So, any potentially leaky operation, here in red, can be tracked back to the source. Even if they don’t leak, we at least know which systems are using our memory and to what degree. That way you know whether you need to cut AIs or particles.

Be Careful With Containers

• Container classes mean more:
• Dynamic allocation
• Range checking
• Copying things around

• Use std::vector::reserve

Presenter
Presentation Notes
Containers are useful, but they’re not a panacaea. They’re not as good as just not allocating memory at all.
Containers make you do more dynamic allocation, range checking, additional work on what could be simpler.
Try to devise memory structures that are not dynamic.
We could go over from our bespoke STL-analogue to custom top level memory management for each system, but the cost of not allowing a lot of our game programmers to be more free with memory would have been very high given our game design goals.

Anyway, if you do use containers, pre-reserve the space they are going to use – make them do exactly one allocation. Don’t just keep appending things onto vectors one at a time: each time you go over the preallocated slack space, the STL vector will have to reallocate and copy itself into a larger space.

We Do This Work For PC Too

• Disk swapping bad!
• Budget tracking means reliable

information everywhere.
• Retrofitting later means touching a

thousand different places.

Presenter
Presentation Notes
Hey, you know what? We do all of this work on the PC version too. Once you do this work for your console memory footprint, you realize that not disk swapping on the PC is a noble goal too.

Common problems of cross
platform development

• Developer Efficiency
• Certification Failure

• Out Of Memory
• Starting Too Late
• Multiplayer

• User Experience
• Programming Issues

Presenter
Presentation Notes
Okay, onto some other certification issues that people sometimes leave too late.

Other Interesting TCRs

• Load times no more than x seconds.
• Letting people play their MP3

collection in your game.
• Minimum refresh interval… even while

loading.
• Compiled with recent SDK.

Presenter
Presentation Notes
Here are some interesting examples of other TRCs.

On the PC we tend not to think too much about load time, because you don’t know how long they’re going to be on the client machine. On a console, Microsoft or Sony is going to give you an extremely specific target in seconds, and you simply cannot take longer than that to load a level. Past a certain threshold you will have to start doing animated load screens to “engage the player”. Console players are generally much less forgiving of slow load times.

Also, compiler versions are going to change on 360/PS3 before you ship. And you won't be able to avoid having to upgrade.
Every so often, Microsoft/Sony/Nintendo will send you a new SDK. You’ll have to send them binaries compiled with a recent SDK.
You can't ship with a stale xdk, period. So you can't just stick with a version you like for a year between starting your project and shipping.
Sometimes things break in the upgrade…	
You need to at least verify code generation, memory, and perf
So you can count on a day’s testing at least.

Solve It In Design

• Make cert requirements part of your
architecture.

• Think about Achievements / Skill Points in
your design.

• (you can get them on PC with SteamWorks)
engaging player during load in Call of Duty 4

Presenter
Presentation Notes
Identify even before you start which TCRs are going to be hard to meet, and make them part of your architecture.
Making them part of the game design may complicate your PC situation because PC hardware performance is so highly variable, but if they feel like a native feature, you’ll realize that TRC is actually a bunch of good usability rules.

One example I like for the “engage the player during load times” requirement is the awesome Call of Duty 4 cutscenes, where they advance the plot and show the player the area he’s in and the weapons he’ll be using and just generally throw around lots of nice eye candy, all to hide the loads that are going on behind the cutscene.
Another example is the elevators in Mass Effect. Some level transitions occurred without going to a load screen: instead the characters would appear to ride in a slow-moving elevator. During the elevator ride, they’d have a conversation about the plot, or you’d hear news about previous things you did in the game. Sure, it was annoying to have to wait on the loads at all, but doing it this way was much less annoying than staring at a load screen, and didn’t jar the player out of the experience of the game. It was possible for them to do this because they built it into the design of the engine and the levels themselves, and they spent the writing effort to make the elevator dialog actually relevant to the plot.

Savegames

• Use small individual files, not one
large package
• Fits on memory cards.

• Deal with losing memory card during
save.

• Do you really need save-anywhere?
• If you rely on quicksave,
• preallocate a RAM disk big enough.

Presenter
Presentation Notes
When it comes to savegames, I recommend you make each save its own individual file, rather than packing them all into one large package. This is simply because your saves will need to fit on a memory card, and the smallest memory cards are 64mb, so the largest your save package can get is 64mb. If your saves are 9mb apiece, this limits you to seven saves altogether for your game.

Also, on the console, it’s a totally legitimate case for the user to accidentally pull the memory card out halfway through a save being written. You can’t crash when that happens – it’s a TRC violation.

Do you really need a save-anywhere feature? I mean…. Really? Checkpoint saves will make your life much easier.
If you really do need save-anywhere, such as for restoring from death or transitioning levels, carve out out a RAM disk large enough to store your maximum possible save game file. Remember: you might not have any save media available at all when the game is run, and it still has to be playable from start to finish.

UI

• Consider title-safe and widescreen
• Be readable in 4:3 SD and 16:9 720p.
• Be readable in 4:3 SD… in German.

• TCR has specific requirements for UI layout &
flow:

• Need a way to pop dialogs on top
• Manufacturer-approved graphics, names

• This usability work makes your PC game
better.

Presenter
Presentation Notes
Title-safe and widescreen have a big impact on UI.
You have to support standard def 4:3 chunky fonts, and also nice 16:9 HD.
Think about these tradeoffs up front and ESPECIALLY LOCALIZATION because your 640x480 German screen may be hard to fit without changing the layout of that menu -- rather, the hierarchy of the menu, you may need to cascade some things.
We had to solve a lot of this with layout reauthoring. We actually changed the hierarchy of the UI screens.
Stick with unicode all the way. Don't be lazy and jump at the false savings of single byte text -- it'll just bite you at the end -- go double byte and localization will be easier.
Study the TRC requirements to determine if you need to change your UI libraries to support some of the specific requirements you’ll need to meet – modal dialogs popping up and the like.
Once you’ve done all this work, once again, you’ll find it makes your PC product better.

Common problems of
crossplatform development

• Developer Efficiency
• Certification Failure

• Out Of Memory
• Starting Too Late
• Multiplayer

• User Experience
• Programming Issues

Presenter
Presentation Notes
Okay, multiplayer!

Multiplayer / LIVE

• Was the majority of our cert issues.
• Start working on this from day #1.

• Do your preliminary work in sample apps.
• Do not let it be blocked by engine

development.
• Rich presence may require

architecture changes.
• Enlist Microsoft/Sony’s help.

• They have lots of good tools for you.

Cort is playing TF: Badlands!
Ahead 3-2 in CTF

Presenter
Presentation Notes
This is really going to be the majority of your cert issues.
Have a live solution from DAY ONE or have someone working on it from DAY ONE.

So: if you are porting your engine at the same time, do a lot of your online work in sample apps
get it working, insulated from chaos that may be in the rest of the codebase.
Live is tricky and work on it needs to proceed quickly. You want to avoid Live development being blocked.
Don’t let development of your multiplayer backbone be stalled because your asset loading isn’t ready yet. It’s a huge amount of work and you want to get on it as soon as you can.

By the way you get a lot of the nice Live stuff with Steamworks.	

Rich presence should be integrated from day one. It turns out that can be a difficult thing to get working properly, if you stick it in at the end.
Rich presence is the stuff that other people see in their Dashboard while you are playing the game, like “Cort is currently playing Team Fortress, and is winning 3-2 at Capture The Flag.”
This is information on the server that must be kept up to date and it always has to have something there no matter what the player is doing.
Can be difficult to know when and where to initialize that info and keep it up to date and keep it current and so on.
Thus, think about the architecture of your game and if you need to make any changes to store this sort of state globally and update it to the servers at appropriate intervals, start now.

Have a good contact at Microsoft or Sony. They want you to succeed. They know better than anyone how all this multiplayer code works. There are things that simply will not work if not done correctly, but the documentation is vague, so there will be much trial and error unless you have someone you can ask questions of.
So… send cookies to the developer support team.

Multiplayer Testing

• Your office LAN is not the Internet.
• Debugging without encryption, voice hides

problems.
• Some problems arise only with high load.

• Do a beta if you can.
• Latency, bandwidth, ping, problems as

always…

Presenter
Presentation Notes
Testing is an issue. There are the obvious issues that will arise from testing on your LAN and assuming the Internet will work in a similar way, of course. But also, early in your project, you may be testing with encryption and voice chat turned off. That’s fine, but you need to turn them on before you send a disc off to Certification, and they change the characteristics of your game, so leave yourself enough time to test with them.
�Also, some problems arise only when you have hundreds of people hammering on your game at once, so beg and plead with your console manufacturer to let you do a public beta. It’ll shake out a lot of issues.

Multiplayer Testing: Simulate
Your Own Network Backbone.

Courtesy Ben Stragnell

Presenter
Presentation Notes
Here’s one way to simulate the Internet on a LAN. It was invented by Ben Strangell, a very clever programmer I knew at Naughty Dog.
Basically, you put each game console on its own subnet, and write your own router that handles all the communication between them. Having written your own router, you can program it to simulate the ‘Net, by cutting up packets into smaller fragments, delaying them to simulate latency, dribbling them out a bit at a time, losing some, and so on.
There is more detail to it, of course – too much to go into here but I bet I could cajole Ben into writing an article if enough people asked.

Common problems of
crossplatform development

• Developer Efficiency
• Certification Failure
• User Experience

• Load Times
• Use of multicore
• Controls

• Programming Issues

Presenter
Presentation Notes
Now we move onto things that won’t keep you from shipping altogether, but may make the console experience significantly inferior to the PC.

Problem: Game Takes Too
Long To Load.

Presenter
Presentation Notes
On PC, "we can't know until QA how long load times will take" , but that’s not acceptable on console: you have specific requirements from the manufacturer limiting your load times. Fortunately, every console is identical, so you know how long they will take.
Load times are as annoying for developers as they are for the customer: I’m sick and tired of waiting five minutes to reboot the engine so I can see if my code works.

Optical Load Times

PROBLEM SOLUTION
Seeks Contiguous files, careful

layout
Misaligned reads Sector alignment

Buffered access Unbuffered DMA I/O

Synchronous stalls Asynchronous loading

Small files loaded on
demand

Large, single files

Presenter
Presentation Notes
The worst offender for slow load times on consoles are seeks – backward seeks especially, which are murderous – and if you are doing synchronous or buffered I/O, that makes the operating system drop everything else it is doing until the file transfer is done. Also, trying to load lots of loose files out of a directory is very performance-negative, so…

Things That Make A DVD
Load Faster

• .ZIP files

• Compression
• (trade CPU for I/O bandwidth)

• Asynchronous loads in a separate thread

Presenter
Presentation Notes
…pack up your assets into archive files, .ZIPs or .PAKs or whatnot. Glue them into big things that you read front to back.

You have much more processing power than you do IO bandwidth, so you can use aggressive compression to make a tradeoff there. Spending 8,000 clock cycles to save one kilobyte of data transfer is totally worthwhile.

The biggest win is from going asynchronous – use multithreading!

How We Refit Our Game
Without Rewriting Everything

Game Thread

LOAD
MODEL

LOAD
TEXTURE

LOAD
SCRIPT

RESOURCE ABSTRACTION

OS FILESYSTEM RAM disk

HDD
DVD

Presenter
Presentation Notes
This isn’t as much work as it might seem. Basically, take all the LOAD functions in your game that used to go straight to the operating system, and put a resource abstraction shim in between your game and the OS. This way you can start to refit the way IO actually happens under the hood without altering the game itself too much. You can even dispatch some load calls to the OS, taking advantage of hard drive caching if available, and quietly shunt some to a RAM disk instead.

Three Categories Of Data

• Big
• Textures, models, BSP, sprites, SFX

• Small
• Config files, scripts, <4k odds and ends

• Really Big
• Dialog, long animations
• Stuff you don’t need right away

Presenter
Presentation Notes
Once again I’ll divide data into three categories.
Big data is… well, art. Levels, textures, all the stuff you need to load to run your level.
Small data is all the little 4kb text files and config scripts and .INIs that every PC engine seems to have a bazillion of that it opens and reads and seeks and closes again dozens of times a second.
And really really big data is long, long dialog, or cutscenes. The advantage there is you don’t really need them when you load the level; you can stream them, even if you don’t stream your levels generally.

Synchronous (naïve) loading

Main thread

Load Model Texture

TextureAnimation

Sub-
animation

Update
HUD

Shader

Normal MapSTALL STALL

STALL

STALLSTALL

STALL

Normal MapSTALL

Geometry STALL

Sound

Presenter
Presentation Notes
This is a diagram of how a lot of PC engines load their data. It goes to load a model, looks in the geometry file, realizes it needs some textures, which means it needs some maps, and so on.
It’s a deep resource dependency hierarchy: you don’t know in advance that when you load asset A, you will also need to load assets B, C, and D to make it work.
Thus you need to touch each file to determine what other file to look at, and every time you seek from one to the next, there’s a huge stall.
Since you’re loading synchronously, the rest of your game engine is waiting for each stall or load to finish, so absolutely nothing else is going on while you are loading this asset, and it will take longer to load in an absolute sense.

Asynchronous loading
Main thread

Load Model

I/O Thread

Data

Processing
Thread

Processing
Thread

Texture Normal
Map

Data

Data

Data

Data

Data

Texture Shader

Normal
Map Animation

Update
HUD

Initialize AI

Presenter
Presentation Notes
This is The Orange Box’s solution. We replaced synchronous load functions with dummies, so that the game thought it had its data back immediately and went on with the rest of the load (because we do have loading screens and the engine wasn’t really rendering – we were doing other setup work and updating a progress bar).

Meanwhile, we had 1 I/O thread, and n computation threads on the other cores.
The I/O thread continuously loads data from disk into ring of buffers – as it read its way through that big .ZIP file, it would take each constituent of the archive and toss it into a buffer.
As buffers filled, the computation jobs grabbed them, uncompressed data, and did all the other necessary setup work.
This is the old producer/consumer model you remember from school.

Key features

• I/O thread does unbuffered DMA
transfers.
• Keeps the disk spinning continuously.

• Lockless implementation
• Trade CPU/SPU for I/O bandwidth
• Return dummy values to sync loads.

Presenter
Presentation Notes
The key features were – the IO thread stopped for nothing! It just read straight ahead on that file, never seeking, never stopping, filling buffers as fast as it could. It was up to the computation jobs to process the data. Obviously this is a balancing act: you need enough jobs to eat the data as fast as IO loads it up, but not so many that you have some waiting around on a mutex. You’ll need to measure to find the right number.
Remember, the DVD drive is a mechanical part. It is subject to the laws of inertia and angular momentum. Spinning the disk up and down takes time, as does shuttling the laser back and forth.

Also, avoid mutexes if you can. Use a lockless implementation; if you mutex, eventually all the threads will pile up behind that mutex, and you’ll be single threaded again.

To make this work we needed to fake out the LOAD functions in our game so they returned instantly, thinking the data had been loaded. So, have some kind of dummy in place in case your game tries to use the data before it’s ready. An example of this is Mass Effect’s progressive texture loading – you can see it when switching armor types very quickly in the inventory interface.

Really big files: streaming

• Store the first ½ sec of each
animation and audio always

• Asynchronously load the rest in the
background

• Need a resource abstraction layer
that can say:
• We have the data
• We’re getting the data
• We will never get the data

Presenter
Presentation Notes
For really large streamed files, say animation and audio, the easiest thing to do is just to always have the first ½ second of everything always loaded. 500ms is usually sufficient to seek to a track on the DVD and start streaming an asset off of it. If you do this, though, you need your resource abstraction to have some mechanism for failing gracefully if the data isn’t ready when it needs to be used.

Small files
• Precompile all small ad-hoc files into one

large blob
• Read it in one operation with level
• Create a fake file system
• Don’t have to change game code!

Keys.ini
Script.txt

Resource.cfg

Hack.txt

Index.idx

Keys.ini

Script.txt

Hack.txt

Index.idx

Resource.cfg

ABSTRACT
FILESYSTEM

GAME
THREAD

OPEN

CLOSE

OPEN

READ

SEEK

READ

CLOSE

OPEN

SEEK

Presenter
Presentation Notes
You need a different technique for small text, script, ad-hoc loaded files. You know, the ones that you open and seek and read and close again five times a second.
Don’t do disk IO on all those things, it’s really slow.
Take all those files -- all those thousands of tiny files -- put them into one huge blob.
Then load that blob into a big RAM disk. Hide the RAM disk behind an abstract filesysten.
This way you don’t have to change everything! Your game thinks it’s opening and closing and doing all this other IO on those tiny files, but really you’re just doing IO on memory through your fake filesystem.

This is how you deal with all that engine code that reads tiny files, without having to retrofit everything.

Know In Advance Each
Level’s Resource Needs

• If you’re going to build a pak, you
need to know what goes in it.

• Every single asset.
• Analyze loading dependencies.
• Crash when loading out-of-pak.

Presenter
Presentation Notes
For this to work you need to know in advance all the resource a level is going to need, so you can put all of them into a big archive file.
There’s a bunch of ways to do this – you could set your libraries to record the assets touched by QA during level plays, or frankly, I like the caveman approach: just have a big manifest text file that lists all the assets used by a level. The level building tool puts what it knows about into the text file, and anything spawned from code has to be added by hand.
Whatever you do, you need to make it an extremely obvious error when the game tries to load something that is not in the archive file. Throw up a big dialog, or better yet, crash. Don’t let people just play through a level that’s doing out-of-pack loads: force them to stop and add that asset to the level’s manifest file. It’s annoying during debug, but it’ll be a crash during retail.

Common problems of cross
platform development

• Developer Efficiency
• Certification Failure
• User Experience

• Load Times
• Use of multicore
• Controls

• Programming Issues

Presenter
Presentation Notes
I mentioned multicore development during the load time discussion, and it’s time to go into that more.

Going Multithreaded:
It’s not next-gen any more.

Xenon Cell

AMD Barcelona Intel Core 2

Presenter
Presentation Notes
People talk about multicore as if it is a next generation technology.

All Major Platforms Are
Multicore.
• 360: 3 symmetric PowerPC cores, 6

threads

• PS3: 1 PowerPC, 2 threads; 7 vector
processors

• Intel/AMD: Quadcore now, 8-core
tomorrow

• This is not “next gen”, it is “today.”

Presenter
Presentation Notes
Multicore is not next gen. It is current generation. All major consoles are multicore, right now, and the major PC manufacturers are going to more and more superscalar designs rather than trying to increase clock speeds. Multicore is very much a current technology and it is not going away. Cores are the new clock speeds.

Our technique:
Discussed here before

“Dragged Kicking and Screaming:
Source Multicore”

Tom Leonard (Valve), GDC 2007

http://www.valvesoftware.com/publications.html

Presenter
Presentation Notes
Our technique has been discussed here before…

http://www.valvesoftware.com/publications.html

Job queues: a summary

Main Thread

Computation Thread

Computation Thread

MAKE
JOB

MAKE
JOB

MAKE
JOB NET INPUT AI

Code

Data

Code

Data

Code

Data

Code

Data

Code

Data

Code

Data

Code

Data

draw

Code

Data

Job Queue

Code

DataJob

A job is code and local data

Put into a queue; other threads
consume from queue

Presenter
Presentation Notes
…but here’s a really quick overview of the most important part. For most systems, we don’t think in terms of threads. We think in terms of jobs. It makes programming much easier.
A job is just some code – like “raytrace” or “AI navmesh cast” – and the data that code is going to run upon, like “level geometry” or “navmesh”.
Our main thread, when it wants to dispatch a job, packs up the code and data into a functor, which it writes out onto a job queue. Computation threads sitting on the other cores grab jobs as they become available and execute them. Sometimes this results in another job being generated, in which case it goes back onto the queue and is picked up by a comp thread later on. Some jobs end up interacting with the GPU, to draw.
The only complication is if your main game thread needs the results from one of these jobs, like the result of a navmesh cast, because it may not be available until the next frame. So you need some kind of synchronization to make sure you don’t use the result before it is ready.

Worked Better Than We
Expected!

• On the 360:
• 50% performance improvement just from

queuing graphics functions.
• 4x increase in framerate with full

implementation.
• On the PS3:

• Game wouldn’t run otherwise!
• Our game already had a client/server

split.

Presenter
Presentation Notes
Tom Leonard presented this as somewhat experimental, and I’m happy to say the experiment worked great and we shipped it.

One thing that worked in our favor is we already had a client/server split due to our ancestry, so we already had a clean line down which one process would draw and accept user input, then dispatch it to another process that would operate on the input and emit new game state for the first process to draw. If your game has a client/server architecture as well, you can put each one on its own thread for great grain at little cost.

There's some efficiency penalty to thinking in terms of jobs but it's far outweighed by parallelization.
The penalty isn't all that high -- you can test by going single-threaded but still queuing your jobs so they happen in your single thread, but after the rest of the game code has run for that frame.

De-Globalize Your Data

• Pack jobs’ data up so they work
locally.
• Put global data into a closure.

• Avoid chasing pointers all over
memory.

• Especially critical on PS3.
• SPUs have only 256kb of memory.
• Random memory access is huge stall.

Presenter
Presentation Notes
De-globalize your data: pack it up so thread jobs can use it.
If you have multiple threads all accessing the same global data, they’re going to step on each other.
Move all global data your job needs into a container class and copy that container along with the rest of the job data.
Avoid data structures that chase pointers all over memory.	
This is very severe on the PS3: if you go to SPU then stepping outside the memory you’ve already copied up means yet another DMA transfer and a massive stall.
It’s also bad on the 360, because of cache coherency issues. And it misses you out on a chance to SIMD effectively.
Think about whether the code chases pointers, and what that's like, how many pointers, where they are in memory.

PS3 Requires More
Aggressive Threading

• All the power of the PS3 is in its Cells.
• The PPU will be always saturated.
• General C++ code does not run well

on SPUs.
• Code memory is tight.

Presenter
Presentation Notes
Generally speaking, multithreading on the PS3 needs more thought.

Porting to PS3 is about dicing your data up to get it all streamlined.
All of the power of the PS3 lies in its SPUs.
The SPEs have 256KB of local memory which must contain both the code+data they are operating on. The data to be processed must be fetched/pushed via DMA.
This means that the SPEs are incredibly good are processing streams of self contained data but are ill-suited to random access of data spread throughout main memory.

The PPU is always going to be overwhelmed compared to the SPUs.
Efficiency on the PS3 is all about moving as much work off to the Cell as possible.
Even 10% efficiency on the SPU is a win if it gets stuff off the overloaded PPC.
10% is what you get if you just cross compile your C++ code. You’ll want better, which will mean writing custom SPU code.
Just think of it as writing highly optimized SIMD code.
Generally, with the SPUs, think in terms of streaming transformations of arrays of data. That suits them much better than dealing with entire C++ objects one at a time.

Some Things To Worry About

• Callbacks
• Synchronizing simulation clocks
• Mutexes (can make you slower than

singlethreaded)
• Hardware threads useful only in

certain cases – measure it.

Presenter
Presentation Notes
Callbacks aren’t thread safe, so think about how you use them.
If you split your client and server, make sure their clocks stay synchronized.
Avoid mutexes where possible.
If you’re considering using the hardware threads on the PowerPC, measure your use cases to make sure they really are a benefit. For us, they were only beneficial in certain specific cases.

Common problems of cross
platform development

• Developer Efficiency
• Certification Failure
• User Experience

• Load Times
• Use of multicore
• Controls

• Programming Issues

Presenter
Presentation Notes
Now, onto control problems.

Problem:
controls don’t feel right.

• Have PC devs test
with 360/PS3
controllers.

• Yes, you can connect
them to a PC.

• Makes everyone a
usability tester all the
time.

• PS3, 360 have
different thumbstick
calibrations.

Presenter
Presentation Notes
PC games are played with a mouse and keyboard. 360/PS3 games are played with thumbsticks. This one’s easy to deal with: plug the PS3/360 controller into your PC.

Have PC devs test on 360 controllers.
It’s always nice to have because it brings up the usability problems to everyone's consciousness.
Support the controller on the PC as a first class citizen.
Do this and a lot of problems go away; testing is easier, you do usability all the time if each dev is wrestling with controller all the time.

One caveat: the potentiometers under the 360 and PS3 thumbsticks are different, so you can’t tune your game and assume it works for the other. If you’re tri-platform, you’ll need to explicitly test each controller.

Common problems of cross
platform development

• Developer Efficiency
• Certification Failure
• User Experience
• Programming Issues

• Graphics
• Framerate / CPU

Presenter
Presentation Notes
On to some specific programming issues.

Time For Good Graphics!

Homestar Runner

Presenter
Presentation Notes
Graphics!

(Photo courtesy the wonderful http://www.homestarrunner.com)

TV pixel and color spaces
differ from monitors

MonitorMonitor TVTV

Presenter
Presentation Notes
I don’t want to talk too much about graphics because it’s a huge issue and I can’t cover it all, but I will describe the biggest issue: TVs are different from monitors in terms of color space and dynamic range. TVs will cut off the darkest blacks and whitest whites.

TVs rebalance histograms

Presenter
Presentation Notes
Also, televisions are designed to deal with widely variant data from television studios.

TVs do their own processing -- if you send it a dark signal, they will process that for you, pull up the dark regions, and expose a lot of your banding.
Our tone mapping algorithm that we had for HDR worked well but didn't fill histogram very well.
It had a lot of dark pixels in there and empty space at the top end.
This looked fine on monitor in dark room, but a TV looked at it, thought, “Gee, this TV station has an underpowered transmitter,” and pulled it up to fill the range, really ruining our dark, moody scenes.

The way you make scenes look dark has to be rethought. If you do depth of field, your TV will apply a sharpening filter (this is the "sharpness dial") to unDOF it.

The way to fix the darkness issue was to adjust the tone mapping so we filled the histogram better.
This kept the moody look the artists wanted without being munched by the TV.

TVs vary in quality

• A common office fight:
• Look good on a default-settings TV?
• Or one that’s been calibrated?

• TV default settings vary very widely.
• The solution:

Presenter
Presentation Notes
There is an eternal argument: do you want to make your game look good on a TV out of the box, or one that's been calibrated?
The argument for tuning your game for an uncalibrated television: Joe Consumer goes to a store, buys a TV, plugs your game in, and expects it to look good off the bat. So you can’t assume the consumer will calibrate the television.
But every television has different default settings. How can you possibly tune for “the default” when there is no such thing as a default all the TVs share?

Watch TV At The Office.

• Watch television on
the displays you’re
developing with.

• Calibrate your TV
so TV looks good.

• Don’t buy the same
TV for everyone!

Presenter
Presentation Notes
My solution: watch TV on the tvs you're going to develop on.
Yes, actual TV. Like, the local news, and Battlestar Galactica, and American Idol, and whatever else is popular in your region.
Calibrate your TV so TV shows look good.
You automatically know when TV looks crappy, and the user is going to calibrate her TV against a TV signal.
For users who don’t calibrate their TVs, typically, everyone's skin looks a little red in most TV because of native miscalibration. So if in your game skin looks a little red too, it won't look miscalibrated to your user – she’ll be used to it, or insensitive.

You have to actually play TV on your TV -- if you just try to make the TV match the PC display you may end up distorting your art very badly.
You don't know if what you're looking at is too bright or blue or dark or whatever unless your TV looks like it's playing good TV as well.
The user will calibrate her television so that watching television looks good.

Photocredit: http://flickr.com/photos/gazzat/315770577/

Shaders

• PC uses HLSL. Consoles use HLSL. Done.
• Shader compilers may be a bit different.

• The few problems will be with the most
complicated shader.

• GPU/CPU power balance a little different.
• Shader conditionals perform well!

• We distribute our shader compiles.
• Compile each shader for both platforms before

checkin.
• Compile everything offline nightly for regression

testing.

Presenter
Presentation Notes
Shaders
Porting to 360 is not so hard: if you have HLSL shaders, you can just throw them at a different compiler.
We hit very few compiler problems or things wildly out of budget.
Most of our work on specific hotspots.
Shader compilation is different between PC and console.
You might have a shader that fits instruction count and all constraints on a PC but doesn't work properly on the 360.
We recompile all of our shaders ahead of time before checking in the code so that if we make a change on PC we will at least know if it compiles properly on the 360 before we check in.
You need an approach to deal with testing regression and compiling offline if you're working with many shaders.
It doesn't happen often but it bites you when it does because it'll always happen with the most complicated shader.
Conditional code inside of 360 or PS3 shaders performs pretty well; take advantage of it.

sRGB

• sRGB read/write curve
different on 360.

• Keep your source art
• Compiling from

another space loses
precision.

• See Alex Vlachos’ talk:
“Post Processing In
The Orange Box”,
Feb 18, 2008.
http://www.valvesoftware.com/
publications.html

Presenter
Presentation Notes
If you use sRGB, be aware that the gamma curve is different between the PC and 360 hardware. PC and PS3 are the same.
Alex Vlacho’s talk explores this in excruciating detail.

Other notes:

• PIX / GCM Hud excellent for very
specific, actionable info.

• Look into tiled rendering on 360
• Makes antialiasing easier, but isn’t critical.

• If you’re hung up on getting PC and
console to match perfectly… let go.
• No one is playing your game twice

simultaneously side-by-side.
• It just has to look good.

Presenter
Presentation Notes
Some other notes:

The native perf tools the manufacturer gives you – PIX on 360, GCM Hud on PS3 – can give you really detailed, actionable data on exactly where your rendering time is going and which primitives are the problem. They’re well worth taking the time to learn.

A lot of graphics guys get caught up in matching their games perfectly across PC and console. If it’s making you rend your hair and gnash your teeth and generally have blood pressure trouble... let go.
It's okay it the PC and console versions of your game look different in this one or that other scene.
Graphics guys get caught up a lot in perfect parity, but even if it doesn't match side by side, is it important to the customer?
Your customer may not care about the motion blur in the water reflection.
Getting to perfect parity may have a huge performance cost: is it worth the additional 20 instructions in every shader just to avoid having artists make console versions of the eight textures in the entire product that actually look bad?

Common problems of
crossplatform development

• Developer Efficiency
• Certification Failure
• User Experience
• Programming Issues

• Graphics
• Framerate / CPU

Presenter
Presentation Notes
On to CPU issues.

360, PS3 have in-order
PowerPC CPUs.
• They do not rearrange instructions to eliminate

dependencies.
• Sloppy code runs more slowly.
• Why? Reorder circuitry is costly, takes up space…
• …space now used for additional entire cores!

Presenter
Presentation Notes
PCs use x86 processors, which all feature out-of-order execution. This means that the CPU reorganizes the instructions in the executable to hide dependencies and minimize stalls. The PowerPC inside the 360 and PS3 is an in-order core, which means it executes instructions one after another without any reorganization. Thus, if there are any cache misses or register independencies, the entire processor halts while waiting for the stall to clear.

Basically, in-order PPCs run sloppy code slowly.

Although this may seem like a bad thing, it was done because reorder circuitry is very costly and bulky. The manufacturers decided to use the space it would occupy on the die to instead put entire additional cores on the chip – so you really have three PowerPCs on the 360, or one PPC and seven Cell SPUs on the PS3. Thus, even if one of the 360’s three cores executes only half the instructions per clock of an equivalent 3ghz Pentium, you have three of them, and if they’re all in use you have 50% more power!

In-order PPCs run sloppy
code more slowly than x86

• 25%-50% speed for straight cross-
compiled code.

• Careful optimization gets close to parity.
• SIMD a bigger win on PPC than x86.
• Remember: on 360 you have three of

them.

Presenter
Presentation Notes
We found that just cross-compiling our code over to 360 resulted in an executable that run about one half to one quarter as fast, clock for clock. With careful optimization we could get individual routines pretty close to parity. Some got a lot better on the 360 – SIMD in particular can be used much more profitably on the 360 than on a PC, because of the large register set and the wide variety of VMX instructions.
And to reiterate: IBM took out the reorder circuitry in order to make room for additional cores. To take advantage of that tradeoff, you really need to use those cores.

LEARN THE ASSEMBLY

• Sometimes you still have to do this.
• Use intrinsics, understand what they

are doing.
• Helps debug release-build crashes.

• Learn the calling convention,
how to augur crash dumps.

• Double-check what compiler emits.

Presenter
Presentation Notes
Yes, sorry, you’re still game programmers, you’re going to need to learn how the chip works.
No, you’re not going to write your game in assembly. You’re going to use compiler intrinsics, which are functions that map to native opcodes on the procressor. But in order to use those intrinsics, you need to understand what they do and how they work.
Also, eventually you will need to debug a crash that occurs in a release build, where the debugger may not be able to populate your watch windows with the contents of all your variables. In this case the easiest way to debug is to open up the disassembler and follow your data through the registers.
Of course, the most likely time when you will have a release build crash that you seriously need to debug is at 1am before the gold master is supposed to go out the door, which is not when you want to start learning how to do this – so be sure to develop the skill earlier on in the project.
Furthermore, knowing the assembly lets you check up on the code the compiler emits. Sometimes you expect the compiler to making optimizations that in fact it is not, and sometimes there are code generation bugs.

LEARN THE PIPELINE

• PPCs are high-latency, high-
throughput

• Learn about all the hazards
• Register dependency, load-hit-store,

cache miss, microcode, ERAT, TLB…
• Understand what the profiler is telling you.
• 80% of perf from touching 20% of code.

Presenter
Presentation Notes
The other big reason to learn the assembly is that it helps you understand the pipeline of the processor and the subtle interdependencies and other small coding issues that will make your code run slowly, but can be very well optimized because the in-order nature of the PPC makes it highly deterministic.
The PPC is a high-latency high-throughput processor. This means that it might take – for example – 12 clock cycles to do a vector add, but you can dispatch a fresh one every clock cycle and have 12 in flight simultaneously so long as none of them depend on one another.
So, learn about the processor and these interdependencies and all the little stalls, at least so that you understand what the profiler means when it says your function is spending 80% of its time waiting on load-hit-stores.
These are the sort of issues that can make sloppy code just run a little bit slowly everywhere in the program, and those small performance hits all over the place can add up in a way that will be very difficult to fix later on. Keeping these problems in mind as you write your code generally – making use of the RESTRICT keyword to limit LHS, for example – will help reduce the amount of unnecessary stalls.

Actually Use SIMD

• Abstract interface
for all platforms.

• Push native vector
class everywhere.

• Replace doubles
with floats.

FORCEINLINE Vector Add (const Vector & a,
const Vector & b)

{
#ifdef _X360

return __vaddfp(a, b);
#elif defined(_SSE)

return _mm_add_ps(a, b);
#else

return Vector(a.x + b.x, a.y + b.y,
a.z + b.z, a.w + b.w);

#endif
}

Presenter
Presentation Notes
It is time to actually start using SIMD, and I don’t mean in five functions inside your graphics library. No, it’s time to really start using it throughout your code, especially since it’s such a huge performance gain on the PowerPC.
You want every vector operation in your game to use SIMD operations if possible. Don’t think of the old FPU version of your Vec4 class as the “gameplay version” while the “SIMD version” is the domain of the graphics team. Vectors are a native data type now, and even gameplay programmers should be using them.
The easiest way to start infiltrating SIMD code through your engine gradually is to write an abstract uniform interface so that the game code calls the function in the same way regardless of whether you are on PC, 360, or have SIMD turned off. That way you can start thinking in a SIMD way everywhere in your code.
Expect a lot of labor as you convert Vector class over from your plain old C++ struct to the native 128-bit register intrinsic: you’ll have to explicitly load into and out of those registers from memory, so you can’t simply change a typedef from one to the other.
Our SIMD code ended up working out well. It's onerous to have to write three versions of each of those functions but at least the leaf code is simpler.

#ifdef Is Not The Way To Go
• Compilers will elide code in an if()

block that is always false.
#define IsX360() true
#define IsPC() false

void DoStuff()
{

if (IsX360())
{

PlatformSpecificFunction();
}
else if (IsPC())
{

WindowsSpecificFunction();
}
else
{ // you might be on the Wii one day!

GeneralCaseFunction(); // or throw an assert
}

}

Presenter
Presentation Notes
The last slide notwithstanding, #ifdef isn’t the best way to handle platform specific code.
Take advantage of the fact that the compiler will syntax-check, but not link, code in a conditional it knows to always be false. (You should check this in your compiler output though; never assume an optimization is taking place.)
This will catch lots of syntax regressions and prevent the PC team from accidentally breaking the PS3 build.

Use if() Instead of #ifdef.

• Stops “the PC guys broke the PS3 build
again!”

• You may need stub functions
• Don’t assume “if” PC “else” 360. You

might be on PS3 or Wii one day.

Presenter
Presentation Notes
You may need to use stub functions – for example GDI calls: stub them out so rather than ifdefing out the function call, you conditionally exit from the function body (inside the stub) so the compiler checks up that you haven't broken the function definition etc. The stub doesn’t have to actually do anything, it is just there for type and syntax checking.

Not All Optimization Is
Premature

• Don’t “do a big perf pass at the end”.
• Getting from 5fps to 15fps isn’t

optimization, it’s a key feature.
• Have budgets from the start,

• Have tools to stay inside them.

Presenter
Presentation Notes
You don't want to hyperoptimize too early, because requirements change and game designs change and whatnot.
But if you leave all your perf work for the last minute, your “optimization” will consist of cutting out half of your design, and you will never be able to really get up to acceptable performance.

Also, if your game is running at five frames per second, that is not an interactive speed. No one is testing your game if it is running at that speed. Going from 20fps to 30fps is optimization. Going from 5fps to 15fps is a key feature, like “Game does not crash.”

It is just not possible to “go back and fix perf.” You need to think about it from the beginning, and have some way of tracking budgets so you can stay inside them, rather than continually going ever and having to do a lot of panicked work to get back under the line.

Things you need to buy:
Devkits

• Development kits
• Live debugging
• Engine, system programmers –

anyone whose bugs block
someone else

• Test kits
• Printf debugging.
• Artists, QA, maybe gameplay

programmers.
• Prepare for failure rate.

Cost:

Cost:

Presenter
Presentation Notes
Development kits are one of the few real capital investments you need to make in the games business.
They mostly come in two flavors. The expensive version costs about as much as a nice Suzuki sportbike. The cheaper version costs as much as a high end PC workstation.
The biggest difference between them is that the expensive version lets you attach a debugger and have your variable watches and step through the code, like on your PC. The cheaper version mostly limits you to printf debugging.
However, if you keep the PC version of your game working, a lot of your bugs can be fixed on the PC – gameplay programmers will see that something is broken on the console, and then go fix it on their workstation. If you can simulate the console’s graphics on your PC, a lot of artist workflow won’t need a devkit at all. So, you can save a lot of money keeping the PC game working.
Don’t skimp on the devkits for your engine programmers though. Anyone whose bugs stop others from working must have ready access to a full dev kit; don’t let them queue up waiting for gray kits to become available.

Also, be aware: the Red Ring Of Death is as much a problem for development hardware as it is for retail. Prepare for attrition.

Other Suggestions

• For your first title: keep it simple!
• Keep people on kits.
• Work to the most constrained

platform.

Presenter
Presentation Notes
Keep it simple! The first thing you release if possible should be something simple -- you need a rehearsal product. Don’t ship five games at once as your first project… tee hee.
Keep people on kits.
Don't let the kits be disconnected and pushed under desk collecting dust because you'll go through startup cost all over again.
And then they're not testing on 360.
It’s easier to port a PS3 game to 360 than from 360 to the PS3, so if you are supporting all three platforms, work to whichever one has the tightest constraints and the others ones will fall into place more easily.

Measure Everything

• Measure everything yourself, as often
as you can.

• Take nothing for granted.
• Verify your compiler output.

Presenter
Presentation Notes
Every time you make a decision, make it from fresh numbers.
Don’t believe published numbers.
Don’t believe my numbers.
Don’t believe your own numbers from last month.
Things are changing all the time.
The more up to date your numbers are, the more informed your decisions will be.

Recap

• Make cert part of your design.
• Memory will always be a struggle.
• Automate offline testing.

• Regression is a bigger problem in cross-
platform development.

• Keep the PC version working!

• Most importantly…

Presenter
Presentation Notes
To recap:
Think about certification early, and realize that the rules are not arbitrary.
They are solid usability rules arrived at through months of careful user testing.
So, the more you adjust the architecture of your game so that it passes cert as a consequence of its design, rather than due to some last minute hacks, the more like a polished native console game you will feel.

Memory is always an issue: getting into memory will be a struggle, and staying there will be a bigger struggle. Always worry about the cost of everything.

Automating your testing will make regressions much easier to catch.
Having a continuous integration and testing server will really help.
Checking each config for each code change is just not feasible use of programmer time.
Regression is a bigger problem in cross platform development because you simply have more platforms to regress.

Keeping the PC version of your game working will save you a lot of development time and effort, and save you money as well.
Also, if you go through all the work to make your game run well on console, but don’t sell on PC, you’re just leaving money on the table. 	

Most importantly:

DO IT NOW

• The sooner you start,
the better off you
will be.

• Manufacturing lead
times are longer on
console, and you
have TRC.

Presenter
Presentation Notes
DO IT NOW.

All of the painful things I have described are only painful if you wait until too late to deal with them.
Addressing them as part of your architecture is much less work, and will make the product better on all platforms.

Also, you need to be done with the console product sooner.
Manufacturing lead times are longer on console products.
You need to be serious about hitting schedule. Four weeks isn’t enough to wrap up a project for shipment.
The console is the more constrained platform, so you need to be done with it sooner.

The Terrible Secret Of Cross-
Platform Development:

Presenter
Presentation Notes
There is one terrible secret of cross platform development I have not mentioned yet, and I should bring it up before you all go.

…no, it’s not that the cake is a lie.

All This Will Make Your PC
Title Better!

• TRC is just a group of good usability rules.
• Memory efficiency helped us on every

platform.
• PC games deserve shorter load times.
• Making money on the PC means hitting the

low end.
• If it runs well on console, it’s easy to make it

run well on PC.
• Steamworks even lets you have achievements

and updates!

Presenter
Presentation Notes
The terrible truth: all this work will make your PC game better!
Once you’ve done your changes to meet TRC, you realize that they’ve really improved your PC product as well. We liked the work we did for our console UI so much we kept it for the PC version.
There are practices from console development, like using fixed size allocators, that I now always use and wouldn't ever go back to the lax way.
PC games take forever to load, and it's annoying.
Especially if you haven't enough RAM on your machine.
So the loading stuff turned out to be something everyone quickly decided we should have been doing all along.
If you do asset loading willy-nilly, as and when the data is needed, things will be slow and your loads will be called from everywhere because no one is keeping track of them.
Keep track of things, and life is much better.

A lot of things you do to keep it running on the console end up benefitting the PC.
A lot of our multithreading work was preparing for 2010 when you have 16 cores on your CPU.
If you want to make money in the PC market you still have to aim pretty low on hardware spec.
A lot of the PC market isn't people buying the Alienware monsters, it's the $1k Dells.
Or even laptops!
Targeting the low-end PC was similar to targeting the 360. Work we did on one helped the other.

Once you have a system for managing between the platforms, the PC is just an incremental cost.
If you’re not doing it as well, you're leaving money on the table.

Special Thanks

• Iestyn Bleasdale-Shepherd
• Steve Bond
• Kerry Davis
• Vitaliy Genkin
• Brian Jacobsen
• Tom Leonard
• Jason Mitchell
• Aaron Seeler
• Jay Stelley
• Alex Vlachos
• Josh Weier
• (and everyone at Valve)

• Ted Jump
• Jon Parise
• Robert Pitt
• Kain Shin
• Ben Stragnell
• Cort Stratton

Presenter
Presentation Notes
Special thanks to all the people at Valve who I interviewed about our own processes (left column), and to those who I interviewed elsewhere in the industry to get a broader view of this development process (right column).

For questions and
answers, please go to:

http://assemblyrequired.wordpress.com

See other Valve
presentations at:

http://www.valvesoftware.com/publications.html

Presenter
Presentation Notes
The following slides are in reserve, to be used for the question and answer section.

http://assemblyrequired.wordpress.com/
http://www.valvesoftware.com/publications.html

	How To Go From PC to Cross Platform Development Without Killing Your Studio
	We Are a PC Shop That Recently Added Console.
	This Is a High-Level Talk
	This Talk is Based On:
	What Landmines Await A PC Developer Going To Console?
	Consoles are like PCs…
	Common Problems of Crossplatform Development
	Targeting Console is Similar to Targeting a Minspec PC
	Now We Know Where The Mines Are…
	Common Problems of Crossplatform Development
	The Core Team
	The Core Team
	The Core Team
	Common problems of cross platform development
	Problem: Iteration is slow.
	Keep your PC version working.
	Simulate console content features on PC
	Cross platform assets
	The Catch-22:
	Our hybrid solution:
	Branch In Pipeline, �Not In Source
	Common problems of cross platform development
	Technical Certification Requirements /�Technical Requirement Checklist /�CERT
	Most Common Problems:
	Problem: �Game Runs Out Of Memory.
	Memory
	Dynamic Allocation Is Bad.
	Where Does Memory Go?
	Assets Have Grown Faster Than Heap.
	Squeezing assets, Step 1:�Account.
	Squeezing assets, step 2: Compress.
	Squeezing assets, step 3:�Reduce.
	Squeezing textures
	Squeezing textures
	Squeezing assets, step 4:�Maintain.
	Squeezing assets, step 5:�Panic.
	In An Ideal World
	Managing Heap Growth
	malloc() Considered Harmful��(new/delete too)
	WHYTO: Make A Custom Memory Allocator
	HOWTO: Make A Custom Memory Allocator
	pwn your memory
	Track Memory Based On Exactly Who Allocates It
	Track Memory Based On Exactly Who Allocates It
	Be Careful With Containers
	We Do This Work For PC Too
	Common problems of cross platform development
	Other Interesting TCRs
	Solve It In Design
	Savegames
	UI
	Common problems of crossplatform development
	Multiplayer / LIVE
	Multiplayer Testing
	Multiplayer Testing: Simulate Your Own Network Backbone.
	Common problems of crossplatform development
	Problem: Game Takes Too Long To Load.
	Optical Load Times
	Things That Make A DVD Load Faster
	How We Refit Our Game Without Rewriting Everything
	Three Categories Of Data
	Synchronous (naïve) loading
	Asynchronous loading
	Key features
	Really big files: streaming
	Small files
	Know In Advance Each Level’s Resource Needs
	Common problems of cross platform development
	Going Multithreaded:�It’s not next-gen any more.
	All Major Platforms Are Multicore.
	Our technique:�Discussed here before
	Job queues: a summary
	Worked Better Than We Expected!
	De-Globalize Your Data
	PS3 Requires More Aggressive Threading
	Some Things To Worry About
	Common problems of cross platform development
	Problem: �controls don’t feel right.
	Common problems of cross platform development
	Time For Good Graphics!
	TV pixel and color spaces differ from monitors
	TVs rebalance histograms
	TVs vary in quality
	Watch TV At The Office.
	Shaders
	sRGB
	Other notes:
	Common problems of crossplatform development
	360, PS3 have in-order PowerPC CPUs.
	In-order PPCs run sloppy code more slowly than x86
	LEARN THE ASSEMBLY
	LEARN THE PIPELINE
	Actually Use SIMD
	#ifdef Is Not The Way To Go
	Use if() Instead of #ifdef.
	Not All Optimization Is Premature
	Things you need to buy: �Devkits
	Other Suggestions
	Measure Everything
	Recap
	DO IT NOW
	The Terrible Secret Of Cross-Platform Development:
	All This Will Make Your PC Title Better!
	Special Thanks
	Slide Number 106

